États-Unis

EPFL Press EPFL Press EPFL Press EPFL Press

Nous contacter
info@epflpress.org

Medias

Présentation

The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.

Sommaire

  • Learning From Geospatial Data: Problems and Important Concepts of Machine Learning – Machine Learning Algorithms for Geospatial Data – Contents of the Book. Software Description – Short Review of the Literature
  • Exploratory Spatial Data Analysis: Presentation of Data and Case Studies: Exploratory Spatial Data Analysis – Data Pre-Processing – Spatial Correlations: Variography – Presentation of Data – k-Nearest Neighbours Algorithm: a Benchmark Model for Regression and Classification
  • Geostatistics: Spatial Predictions – Geostatistical Conditional Simulations – Spatial Classification – Software
  • Machine Learning Algorithms: Artificial Neural Networks: Introduction – Radial Basis Function Neural Networks – General Regression Neural Networks – Probabilistic Neural Networks – Self-Organising Maps – Gaussian Mixture Models And Mixture Density Network
  • Support Vector Machines And Kernel Methods: Introduction to Statistical Learning Theory – Support Vector Classification – Spatial Data Classification with SVM – Support Vector Regression – Spatial Data Mapping with SVR – Advanced Topics in Kernel Methods.

Informations

Editeur : EPFL Press English Imprint

Auteur(s) : Mikhail Kanevski, Alexei Pozdnoukhov, Vadim Timonin

Collection : Environmental Engineering

Publication : 3 mars 2023

Edition : 1ère édition

Support(s) : Livre papier, eBook [PDF]

Nombre de pages Livre papier : 392

Nombre de pages eBook [PDF] : 392

Format (en mm) Livre papier : 160 x 240

Taille(s) : 52,9 Mo (PDF)

Poids (en grammes) : 850

Langue(s) : Anglais

EAN13 Livre papier : 9782940222247

EAN13 eBook [PDF] : 9782889149582

Du même auteur
Dans la même collection
Ils ont aussi acheté
Sur des thèmes similaires
--:-- / --:--