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Animals possess efficient mechanisms for detecting and neutralizing infections. 
The application of Drosophila genetics to the study of these mechanisms has 
generated insights into insect immunity and uncovered general principles of 
animal host defense. These studies have shown that Drosophila has multiple de-
fense “modules” that can be deployed in a coordinated response against distinct 
pathogens. These include physical barriers such as epithelia and chitin, the pro-
duction of reactive oxygen species, antimicrobial factors, blood clotting, the me-
lanization reaction, and complex cellular responses. These responses are accom-
panied by metabolic reprogramming to fuel the immune system and effectively 
combat pathogens. Recent studies have highlighted additional mechanisms that 
contribute to host defense, such as symbiont mediated immunity, disease tole-
rance mechanisms, and behavioral immunity. These studies reveal broader roles 
of the immune system beyond infection, notably in disease pathologies such as 
neurodegeneration or cancer. This remarkable animal model has given us a bet-
ter understanding of the multiple roles of the immune system at the organismal 
level. Although it is difficult to summarize the sheer number of studies publi-
shed on Drosophila immunity in recent years, here we aim to provide an over-
view of recent research trends, challenges, and discoveries in immunity through 
the lens of Drosophila. We hope that this overview will introduce scientists to the 
sophisticated fly immune system, draw interest to exciting recent findings in the 
field, and push new horizons of research by contextualizing existing research 
and highlighting exciting avenues to explore.
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Goals of this review

The evolutionary history of the dipteran Drosophila melanogaster is shaped by various 
biotic interactions in its natural habitat, the decaying fruit. These interactions include 
beneficial and pathogenic microbes which trigger a diverse set of immune responses. 
Powerful genetic approaches and a wealth of genomic resources have given Drosophila 
one of the best characterized metazoan immune systems. Drosophila immune research 
has broad relevance due to conservation of innate immune mechanisms in mammals, 
and has major environmental, medical, and agricultural impacts by providing insight on 
how this ubiquitous insect group deals with its microbial environment. Drosophila also 
provides a powerful model to explore new concepts, enabling the study of immunity in 
an evolutionary framework at the organismal level.

Although Drosophila possess only innate and not adaptive immunity, recent stud-
ies have shown incredible complexity and specificity in Drosophila host defense. These 
studies encompass multilevel defense modules that can be selectively activated accord-
ing to the nature of the infection. These discoveries have shifted our perception of innate 
immunity, revealing that diverse mechanisms, both immune and non-immune, con-
tribute to host survival to infection. Beyond infection, innate immunity also has critical 
roles in whole-body homeostasis, for example by shaping the microbiota, and in non-in-
fectious disease contexts such as cancer, neurodegeneration, and aging. The immune 
system is no longer viewed in isolation but as an integral factor in other physiological 
functions, working to promote fitness in a microbe-rich environment. The goal of this 
review (building on a previous review (Lemaitre and Hoffmann, 2007)) is to provide an 
overview of recent research trends, challenges, and discoveries in immunity through the 
lens of Drosophila, with updated interpretation and context from foundational findings 
in the field.

Author note
We have tried to be as comprehensive as possible in reviewing the field of Drosophila 
immunity. A notable exception is that we largely did not include articles exploring the 
pathogen side of immunity, including virulence factors of bacteria (e.g., Pseudomonas 
aeruginosa, Pseudomonas entomophila, Serratia marcescens or Vibrio cholerae), viruses, 
fungi or parasites. Although these topics are important to fully understand the immune 
system, as revealed by the strategies used by entomopathogens to suppress the immune 
system (D’Argenio et al., 2001; Davoodi and Foley, 2020; Dieppois et al., 2015; Dupas et 
al., 2003; Govind, 1999; Kurz et al., 2003; Lee et al., 2018; Limmer et al., 2011; Mortimer, 
2013; Vallet-Gely et al., 2008; Vodovar et al., 2004; Younes et al., 2020), addressing them 
extensively would require another review. We apologize for articles that were missed or 
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important areas we could not cover in sufficient detail within the scope of this review. 
Readers are welcome to contact the authors to discuss possible omissions and errors. It is 
also important to note that some topics are covered in greater detail than others. This is 
partially due to the fact that Drosophila immune research has concentrated on what was 
considered important at different times (e.g., the extensive study of conserved signaling 
pathways in the late 90s to the early 2000s), while other topics received relatively little 
attention (e.g., cuticular and epithelial barriers, melanization) or are just beginning to 
emerge (e.g., behavioral immunity, sex differences).

This state-of-the-art description of the immune system takes advantage of an ex-
tensive reproducibility project, which offers new perspectives on literature published 
before 2010 (https://reprosci.epfl.ch/), see Westlake et al., 2024 for a summary). In light 
of this, we discuss articles that have been received with skepticism and topics that have 
produced conflicting results. This is in no way intended to judge the scientific value of 
these articles, but rather to highlight that science is an ongoing process. 

Finally, we provide two extensive supplementary tables summarizing data that 
may be of use in future research (https://www.epfl.ch/labs/lemaitrelab/lemaitre-lab/
resources).

Supplementary List 1: An updated list of Drosophila immune related genes
Supplementary List 2: A description of Drosophila host defense peptides

This book should be cited as:
Westlake H., Hanson, M.A., Lemaitre, B. (2024), The Drosophila Immunity Handbook 
EPFL Press, doi: 10.55430/6304TDIHVA01

Corresponding authors:
M.A. Hanson (M.Hanson@exeter.ac.uk), B.L. Lemaitre (bruno.lemaitre@epfl.ch)

https://reprosci.epfl.ch/
https://www.epfl.ch/labs/lemaitrelab/lemaitre-lab/resources
https://www.epfl.ch/labs/lemaitrelab/lemaitre-lab/resources
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1
General introduction: Concepts

Multiple factors contribute to evolutionary shaping of immune systems in living organ-
isms. To situate the reader, we review some overarching concepts and terminology used 
in the study of Drosophila immunity before describing Drosophila immune modules in 
detail.

A.	 Factors that shape immune systems
An immune system must be adapted to the nature and diversity of microbes present 
in the host environment (Schmid-Hempel, 2021). Animals lose immune genes that are 
no longer beneficial: these are sometimes detectable in a pseudogenized form in the 
genome. A broad range of species from microbes to macroparasites are capable of infect-
ing Drosophila, which accordingly possesses an array of immune programs to deal with 
diverse challenges (Figure 1). The developmental stage of the host at time of infection, 
and recurrence and severity of infection, are also key elements that shape immune re-
actions. Drosophila has defense mechanisms that are stage-specific, such as wasp egg 
encapsulation in the larva. Recurrent infections may favor evolution of long-lasting in-
nate immune responses. The short lifespan and ephemeral ecology of Drosophila mela-
nogaster has likely constrained the evolution of ‘true’ immune memory processes like 
the adaptive immunity of vertebrates. Instead, priming or trained immunity describe 
responses in Drosophila that enhance defense against repeated infection (Pradeu et al., 
2024; Sheehan et al., 2020; Tang et al., 2023). These effects have been attributed to the 
persistence of immune effectors, increased levels of basal immunity, higher immune re-
activity, and possible epigenetic changes in previously infected flies. Transgenerational 
effects, where protection is provided maternally to offspring, have been described in 
Drosophila for antiviral but not antibacterial defense (Mondotte et al., 2020; Radhika and 
Lazzaro, 2023; Vilcinskas, 2021). Trade-offs in energetic costs with other essential phys-
iological functions, reproduction, and lifespan also shape immunity (Kraaijeveld et al., 
2002). The level of basal immunity in the absence of infection is an important parameter 
influencing survival upon infection. Many immune modules are inducible, and are fully 
deployed only upon challenge, mitigating constitutive costs of immune defense (Harvell, 
1990). Alternatively, some immune defenses are constitutively deployed and are not en-
hanced upon infection. The high cost of the immune system explains why immune mod-
ules with low utility are lost over time (Palmer and Jiggins, 2015; Ruzzante et al., 2022). 
Finally, the immune system is constrained by phylogeny. That is, Drosophila has specific 
features as an insect, for instance: an exoskeleton, larval growth by molting, metamor-
phosis, gas exchange through tracheae, and an open circulatory system. Although insect 
immune systems present a great deal of variation, fundamental mechanisms similar to 
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those found in Drosophila recur throughout the insect class. Thus, characterization of 
the Drosophila immune system has benefitted from studies in other insects, where some 
immune modules may be better studied, and vice versa.

B.	 Multiple ways to resist infection
Initial studies of the Drosophila immune system focused on effector mechanisms that 
directly combat pathogens, such as phagocytosis, antimicrobial peptides, or encapsula-
tion. Today, we understand that Drosophila limit or combat infection in a greater variety 
of ways (Pradeu et al., 2024). First, flies exhibit behavioral immunity, a suite of behav-
iors that limit pathogen entry or contribute to sickness states promoting recovery (Davis 
and Schlenke, 2022; De Roode and Lefèvre, 2012; Montanari and Royet, 2021). Once 
an infection is established, a new suite of mechanisms in various physiological com-
partments limit pathogen growth inside the organism. Cell-intrinsic immunity refers 
to intracellular mechanisms such as antiviral defense. Local immunity takes place in 
epithelia in contact with the external environment, such as the gut or trachea. Systemic 
immunity takes place in the hemolymph (insect blood) and is usually divided into two 
branches: cellular immunity involving blood cells, and humoral immunity involving 
secreted substances produced by the hemocytes (Drosophila blood cells) and fat body, 
the fly analog of the liver. Finally, reproductive immunity deals with mechanisms that 
limit infection upon mating in male and female genital organs.

Immune programs are further divided into resistance mechanisms that directly 
target or limit growth of pathogens, and disease tolerance (or resilience) mechanisms 
that promote host survival without targeting pathogens (Howick and Lazzaro, 2017; 
Medzhitov et al., 2012). Although the complex interplay between survival and pathogen 
growth makes separating resistance and tolerance difficult (Hidalgo et al., 2022; Kutzer 
and Armitage, 2016a; Paulo et al., 2023), a common method is to plot survival against 
microbial load (Medzhitov et al., 2012; Schneider and Ayres, 2008). As survival outcomes 
are essentially determined by a race between pathogen-induced damage to the host 
competing against the host’s ability to mitigate that damage, either by repairing itself or 
eliminating the pathogen, this approach reasonably assumes that microbial load is more 
greatly affected by disrupting resistance mechanisms than tolerance mechanisms. Dis-
ease tolerance mechanisms are quite diverse; any factors impacting fitness can indirectly 
affect host survival. For instance, a brain mutation making flies hyperactive may affect 
survival by wasting energy that then cannot fuel the immune system. In this review, 
we will focus on tolerance mechanisms that are closely related to the infection process. 
These include tissue repair, stress responses, detoxification, and mechanisms that pro-
tect the host against deleterious consequences of the immune system. Nutritional im-
munity is another mechanism that contributes to defense by preventing pathogens from 
benefitting from host nutrients such as iron. Finally, protection against pathogens might 
not be derived from Drosophila itself but from its microbiota, a process called symbi-
ont-mediated immunity (Brownlie and Johnson, 2009). Microbial symbionts may pro-
mote survival directly by interfering with pathogen growth via niche competition or tox-
in production, or indirectly by stimulating the host immune system and increasing basal 
immunity. In this review, we primarily address how immune pathways and genes impact 
host defense, but the outcome of infection is influenced by multiple internal (stage, age, 
microbiota, sex, genetic backgrounds) and external factors that influence both patho-
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gen growth and host defense in complex ways such as temperature (Cavigliasso et al., 
2021; Fedorka et al., 2016; Kutch et al., 2014; Lazzaro et al., 2008; MacMillan et al., 2016; 
Salehipour-shirazi et al., 2017; Štětina et al., 2019), diet (Brown et al., 2009; Kutzer and 
Armitage, 2016b), hydration state (Zheng et al., 2018), CO2 and oxygen concentration 
(Bandarra et al., 2014; Barretto et al., 2020; Helenius et al., 2009), social environment 
(Leech et al., 2017, 2017), mating status (see Consequences of mating, page 122), time 
of day and seasonality (Behrman et al., 2018; Lee and Edery, 2008; Stone et al., 2012) and 
past exposure to stresses and infections. Thus, many parameters can influence experi-
mental results, including methodological choices such as the mode and site of infection, 
as exemplified by the differential impact on survival of inoculating flies in the thorax or 
the abdomen (Chambers et al., 2014).

Figure 1 Different ways to resist infection
Multiple factors shape the evolution of the immune system to respond to pathogens and micro-
biota found in the host environment. These factors include the nature and number of pathogens 
in the environment, the life stage at which pathogens infect the host, trade-offs with other phys-
iological needs such as reproduction, and evolutionary constraints. These evolutionary pressures 
have led to the selection of multiple mechanisms that contribute to survival upon infection. Figure 
created with BioRender.com, CC-BY-NC-ND.

https://www.BioRender.com
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Box 1	 Modeling infection
Analysis of the Drosophila immune response has largely relied on using appropriate 
gene read-outs to monitor immune pathway activation in response to different stimuli, 
alongside experiments to see how pathway components and immune-responsive genes 
affect fly survival and pathogen growth. 

Since large numbers of flies can easily be infected, Drosophila is especially suited 
to quantitative modelling of the immune system (Louie et al., 2016). One of the main 
determinants of survival outcome is the rapidity of the immune response, as evidenced 
by studies showing that survival depends on how quickly antimicrobial peptides are 
upregulated or lamellocytes are generated (Duneau et al., 2017a; Leitão et al., 2020). 
Despite identical controlled conditions, survival outcome can vary from individual to 
individual. This stochasticity was explained by characterizing survival as an outcome 
resulting from a tight arms race between pathogen growth and control by the immune 
system (Figure Box 1) (Duneau et al., 2017a). This model introduced parameters that 
determine infection outcome: the rate of microbe growth, the time taken to immuno-
logical control, the tipping point at which microbe load goes beyond what can possibly 
be controlled, and the titers at which microbe load settles following suppression (set 
point pathogen load) or kills the host (pathogen load upon death) (Lafont et al., 
2021). Future efforts could expand these parameters to account for additional layers, 
such as microbe-dependent factors like shifts between protected and susceptible states 
(Ellner et al., 2021), or facets of the host response including tolerance to microbial or 
autotoxic immune damage.

Due to its ease of observation and simple binomial outcome, fly geneticists tend 
to define pathogenicity based on lethality. This criterion is rather restrictive compared to 
human disease studies: one of the most virulent bacteria in humans, Shigella, might not 
be considered pathogenic using this criterion, as it kills ‘only’ 3-10 % of those infected. 
A lack of readily assayed intermediate disease states has hampered efforts to advance 
definitions of pathogenicity in flies. However, recent studies have noted additional out-
comes after infection visible to the naked eye which may allow scoring of intermediate 
disease states independent of mortality. These include: bloating of the abdomen after 
infection by Drosophila C virus, Acetobacter or Pectobacterium bacteria (Chtarbanova et 
al., 2014; Hanson et al., 2023; Zugasti et al., 2020), an erect wing response after immune 
stimulation (Hanson et al., 2021), or neurological symptoms associated with pathogen 
virulence factors (Huang et al., 2023; Smith et al., 2023). Reproductive fitness is also 
often ignored in Drosophila immune studies, despite research showing that there are 
parasites and pathogens that sterilize their hosts without affecting immediate survival 
(Bruner-Montero et al., 2023; Jaenike et al., 2010). Vigilance for such phenotypes will 
reveal their specificity or universality, and better demarcate disease progression. Pres-
ently, the underlying host factors that regulate these intermediate responses are poorly 
resolved. 
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Figure Box 1 Modelling within-host pathogen growth dynamics
The survival outcome of a given infection (left) depends on initial pathogen dose, which deter-
mines subsequent growth dynamics within the host (right). For pathogens with moderate vir-
ulence, too high a dose overwhelms the host before the host can mount a successful immune 
response (left, red line), while a low dose creates an opposite dynamic where the pathogen is 
always controlled (left, blue line). These infection kinetics are described by Duneau et al. using 
formal parameters: time to control, tipping point, Set Point Pathogen Load (SPPL), and Pathogen 
Load Upon Death (PLUD) (Duneau et al., 2017a). Infection kinetics play out over three main stag-
es: (i) an early phase where recognition and immune signaling begins and pathogen growth is not 
controlled, (ii) a critical juncture that determines host outcome, where immune effectors start to 
control pathogen growth, and (iii) a final late phase where the results of the individual dynamics 
at the critical juncture become visible. Cryptic variation in individual host and bacterial states 
drives the stochasticity of the ultimate binary outcome: survival or death. Fundamentally, the host 
must mount a minimum threshold microbicidal activity to constrain pathogen growth. The time 
to control is a measure of how long it takes host immune activation to reach this threshold of mi-
crobicidal activity. Importantly, this threshold must be achieved before the pathogen reaches the 
tipping point microbial load, after which, microbial growth and total load will always exceed the 
potential for constraint by the host immune response. When time to control is very close to the time 
it takes a microbe to reach the tipping point microbial load, cryptic variation in host or bacterial 
condition can affect the ultimate outcome, even amongst identical infections. The black triangle 
at this juncture represents this uncertainty around potential trajectories. Ultimately, if microbe 
load exceeds the tipping point, microbial growth proceeds unchecked, and the host eventually suc-
cumbs to microbial burden at a relatively fixed PLUD determined by the limit of host tolerance to 
that pathogen. If microbial growth is successfully constrained, then the microbe load is controlled 
and reduces towards an SPPL. The SPPL is more stochastic than the PLUD and is affected some-
what by initial dose, suggesting that the microbe load at time to control determines the eventual 
SPPL for a given infected individual. Microbe load remains at SPPL for weeks, and in many cases 
pathogenic microbes are never fully cleared (Hidalgo et al., 2022). Microbes maintained at the 
SPPL may also stochastically break out into recurrent systemic infections, renewing the race be-
tween the host immune response and microbial growth even at late time points (Ramirez-Corona 
et al., 2022). Like adjusting pathogen dose, infection kinetics are also affected by how close the en-
vironmental temperature is to the ideal microbial growth temperature, or availability of nutrients, 
with similar predictable shifts that favor pathogen growth speed and increased host mortality. 
Figure adapted from (Duneau et al., 2017a). 





2
Ecological context of Drosophila  

and its microbiota

Drosophila melanogaster has a world-wide distribution and is closely associated with 
human activity (Throckmorton, 1975). This fly is generally found associated with de-
caying fruits (Figure 2). This ephemeral and seasonal ecosystem, which contributes to 
the fast life cycle of the fly, is shared with two other genetic model organisms: the nema-
tode Caenorhabditis elegans and the yeast Saccharomyces cerevisiae (Félix and Braendle, 
2010). Decaying fruits house a complex ecosystem shaped by dynamic changes in fungal 
and bacterial composition during fruit fermentation. In this microbe-rich environment, 
Drosophila interacts with a broad range of symbionts, opportunists, and pathogens. This 
diversity of cohabitants has likely shaped the sophisticated Drosophila immune system, 
which faces different selective pressures compared to insects feeding on non-rotting 
foods, such as bees, silkworms, aphids, or weevils (Gerardo et al., 2010; Hammer et al., 
2023; Heddi and Zaidman-Rémy, 2018). Furthermore, a short life cycle allows the Dro-
sophila genome to evolve markedly over short (human) timescales. Although this is ben-
eficial for genetic studies, Drosophila strains have been kept by geneticists for several 
decades on food treated with fungicide and a microbiota less diverse than that found in 
natural habitats (Chandler et al., 2011; Chen et al., 2022; Pais et al., 2018). This reduced 
pathogen pressure on lab-reared Drosophila may facilitate fixation of mutations in key 

Figure 2 The rotting fruit, an ephemeral ecosystem
Drosophila larvae and adults develop in decaying organic matter, such as the Opuntia fruit shown 
here. The fruit was damaged by bird pecking, and colonized by bacteria, yeasts, and flies laying 
eggs in the fruit. Drosophila can serve as vectors for microbes, transferring them between food 
substrates. B.L. Personal photo, taken in Tunisia.
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immune genes, such as imd, NimC1 and PPO3, mutations of which have been seren-
dipitously discovered in laboratory stocks. Pre-existing natural polymorphisms are also 
common in immune genes, and may become fixed in stocks derived from wild-caught 
individuals given relaxed infectious pressure in the lab (Arunkumar et al., 2023; Hanson 
et al., 2019a; Smith et al., 2023). Other aspects of fly care (e.g., diet, temperature, flip-
ping frequency) also impact infection outcome in important ways, with different severity 
according to fly genetic background. Collectively, detailed analysis of local microbio-
ta conditions and fly care practices should not only improve repeatability of immune 
studies, but also clarify why marked differences in infection outcome are seen across 
laboratories.

A.	 Pathogens of Drosophila
Recent studies using DNA sequencing and sampling of wild fly populations have devel-
oped a better picture of the variety of viruses, bacteria, fungi, microsporidians, protozo-
ans (notably trypanosomes), and macroparasites (nematodes, mites, parasitoid wasps) 
associated with flies (Figure 3) (Carton et al., 1986; Chandler et al., 2011; Webster et al., 
2015). Although some important observations have been made in natural conditions, 
our understanding of how pathogens affect fly survival or fitness in the wild is limited. 
Surveys of wild populations reveal that virus or parasitoid wasp infections can be wide-
spread (up to 85% of larvae in a population can be infested by parasitoid wasps) (Carton 
et al., 1986; Subasi et al., 2023; Wallace and Obbard, 2023; Webster et al., 2015). This is 
also likely the case for bacterial and fungal pathogens, although we lack data. One study 
suggests that bacteria can be major factors affecting regional and seasonal fly immunity 
population genetics (Behrman et al., 2018).

While viruses and parasitoids are highly co-evolved pathogens, most bacterial 
and fungal pathogens of Drosophila are considered opportunistic, as Drosophila is just 
one among many possible host species found in the environment. Due to host-pathogen 
arms races, co-evolved pathogens whose survival depends on a specific host are expected 
to display more mechanisms that suppress the host immune system (see Box 7, Wasps 
target the Drosophila immune system, page 103). Consistent with this, many suppres-
sors of Drosophila immunity have been observed in viruses and parasitoid wasps. Some 
pathogens manipulate Drosophila behavior to disseminate themselves, such as the fun-
gal entomopathogen Entomophthora muscae (Bonning and Saleh, 2021; Elya et al., 2023, 
2018; Yang et al., 2021). Drosophila is also a vector of plant pathogens such as Pectobac-
terium carotovorum Ecc15, a bacterium that induces soft rot of various plants including 
potatoes (Kloepper et al., 1981). While all P. carotovorum strains induce plant rot by 
producing pectinolytic enzymes, only certain strains possess virulence factors that allow 
colonization of the Drosophila gut, indicating that specific mechanisms have evolved to 
allow even opportunistic bacteria to hitchhike on flies (Basset et al., 2000; Basset et al., 
2003; Muniz et al., 2007; Vieira et al., 2020). 

B.	 Routes of infection
Use of natural pathogens and natural infection routes that mimic challenges faced by 
Drosophila in the wild is ultimately the gold standard in studying the immune system 
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(Neyen et al., 2014; Troha and Buchon, 2019). This also allows study of pathogen-specific 
entry routes. Although oral or topical infection routes are considered the most ‘natural’, 
systemic infections are likely more common than appreciated in the wild. A recent sur-
vey of wild-caught flies found that ~31% show abdominal or genital scars, likely due to 
mites or mating injuries (Figure 4A, B) (Subasi et al., 2023). Larvae likely experience 
many wounds from wasp infestation, nematode attack, or incidental scrapes from the 
food substrate. While injection or septic injury as employed in the lab is undoubtedly 
artificial, this approach mimics such infection routes (Figure 4C). An inevitable draw-
back of using natural pathogens is that they may be co-evolved to suppress aspects of the 
immune response we want to study. As a result, study of the Drosophila immune system 

Figure 3 Enemies of Drosophila and corresponding host defenses
Drosophila can be infected by pathogens belonging to many different classes (Caravello et al., 2022; 
Franchet et al., 2019; Ryckebusch et al., 2024; Teixeira et al., 2008; Xie et al., 2013). The main mech-
anism(s) of defense used to combat each class of pathogen are indicated, although defenses may 
be pathogen-specific. Asterisks (*) indicate symbiont-mediated immunity.
Photo credits: Drosophila C Viruses (Dostert et al., 2003); Baccillus thuringiensis (Le Bacillus 
thuringiensis (Bt) en question, Biofil N°128 2020 p. 23-25); Pseudomonas alcalifaciens (CDC/ Pete 
Wardell, Public domain, via Wikimedia Commons); Beauveria bassiana (B. Lemaitre CC); Steiner-
nema entomopathogenic nematodes (Mirayana M. Barros, Dennis Chang, Dihong Lu, and Adler 
R. Dillman via Wikimedia Commons). Leptopilina parasitoid wasp; Microsporidia (Wikimedia 
commons, unlicensed CDC); Trypanosome (Ed Uthman from Houston, TX, USA, CC BY 2.0).
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has greatly benefitted from use of non-native pathogens, which allows better control 
of the multiple parameters influencing infection. This approach enables exploration of 
the underlying properties of the immune response without confounding factors such as 
suppressors or behavioral manipulation by natural pathogens.

C.	 The gut microbiota
The gut of laboratory-maintained fly stocks hosts low bacterial diversity (1–30 species) 
compared to wild-caught flies (Broderick and Lemaitre, 2012; Chandler et al., 2011; 
Chen et al., 2022; Wong et al., 2011). The most common species are members of just 
three major families: Lactobacillaceae, a family of lactic acid-producing bacteria (e.g., 
Lactiplantibacillus, Leuconostoc); Acetobacteraceae, a family of acetic acid-produc-
ing bacteria (e.g., Acetobacter, Gluconobacter); and occasionally Enterobacteriaceae. 

Figure 4 Septic injury and natural infection in wild and lab-reared flies
A Wounds on a D. melanogaster male collected from the wild. Arrowheads indicate melanized 
spots on the thorax. The cause of this damage is not known but may be due to a mite. Photo courte-
sy of Bengisu S. and Sophie A.O. Armitage. See also (Subasi et al., 2023). B Female D. melanogas-
ter with a Macrocheles sp. mite attached to the abdomen (arrowhead). Photo courtesy of Bengisu S. 
and Sophie A.O. Armitage. See also (Subasi et al., 2023). C An adult fly undergoing septic infec-
tion in the lab. The fly is pricked with a 0.2mm needle dipped in a concentrated bacterial pellet to 
introduce systemic infection (Photo credit, B. Lemaitre CC). D Flies naturally infected with fungal 
spores. Anaesthetized flies were rolled on a lawn of sporulating Beauveria bassiana (Photo credit, 
B. Lemaitre CC).
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Yeasts such as Hanseniaspora, Pichia, Starmerella or Saccharomyces are also found 
(Broderick and Lemaitre, 2012; Chandler et al., 2011; Mure et al., 2023; Wong et al., 
2011). Recent studies have further emphasized the importance of microbes, viruses 
and endosymbionts circulating in laboratory Drosophila stocks, as these cryptic factors 
can influence experimental results (Habayeb et al., 2009; Hanson et al., 2023; Hanson 
and Lemaitre, 2023; L’heritier, 1958; Teixeira et al., 2008). Interestingly, flies tend to 
favor microbially diverse environments, and are attracted to bacteria and yeast compo-
sitions able to provide specific metabolites, such as derivatives of ethanol and acetate 
catabolism (Fischer et al., 2017).

Unlike mammals and social insects, (Engel and Moran, 2013; Martinson et al., 
2017), D. melanogaster does not harbor a core microbiota distinct from the environment. 
Instead, microbes are ingested and colonize the host gut, and gut microbes are in turn ex-
creted and colonize the external environment. Excreted bacteria can then modify the ex-
ternal ecological niche to favor growth and recolonization of bacteria beneficial to the fly, 
including strains that more persistently colonize the intestinal tract (Gould et al., 2018; 
Pais et al., 2018; Storelli et al., 2018). These persisters may be better able to resist the ac-
tion of host immune effectors (Arias-Rojas et al., 2023), or may colonize host-constructed 
physical niches (Pais et al., 2018; Dodge et al., 2023). Pulse-chase studies show that the 
cardia, a segment of the adult foregut, can selectively bind and stabilize colonization of 
bacteria with strain-level specificity. There is no similar niche in larvae, which feed con-
tinuously and therefore have a more constant and abundant microbiota, while adults in-
gest food in intermittent sips (Storelli et al., 2011). In the laboratory, emerging adults have 
almost no bacteria in the gut, and frequent flipping of flies on sterile medium maintains 
a low microbiota load in adults (Blum et al., 2013; Wong et al., 2011). 

The microbiota influences host traits in many ways, providing a food source, 
stimulating digestion, and driving anabolic pathways that promote larval growth and 
oogenesis (Elgart et al., 2016; Lesperance and Broderick, 2021; Ridley et al., 2012; Shin 
et al., 2011; Storelli et al., 2011). The microbiota further complement fly metabolism by 
providing vitamins (notably B group vitamins), cholesterol (from yeast), and amino acids 
that ameliorate or complement the diet (Consuegra et al., 2020; Sannino et al., 2018). 
It is therefore not surprising that microbiota manipulations can have multiple effects 
on the host. While germ-free flies are easily cultivated in typical laboratory conditions, 
microbial associations greatly promote growth in nutrient-poor conditions, emphasizing 
the importance of live bacteria to fly development (Mure et al., 2023; Shin et al., 2011; 
Storelli et al., 2011). Unfortunately, it can be difficult to distinguish whether these bene-
fits come from direct action of bacteria, or indirect processing of the food substratum by 
bacteria into metabolites that nourish flies. Interactions between the microbiota and diet 
or aging further emphasize the difficulty in ascribing direct or indirect effects. For this 
reason, the role of the gut microbiota is best defined in terms of its interaction with the 
nutritional environment (Keebaugh et al., 2019). 

Direct antagonistic interactions between microbiota and entomopathogens have 
been described in several insect species (Blum et al., 2013; Fast et al., 2018; Glittenberg et 
al., 2011; Gould et al., 2018; Lee et al., 2018; Sibley et al., 2008). However, to date little is 
known about how Drosophila microbiota impact host survival to pathogenic microbes. 
The microbiota may impact host survival by stimulating basal immunity, by engaging in 
direct niche competition, or by influencing host metabolism. In larvae, microbiota pro-
tect the host upon ingestion of Candida albicans (Glittenberg et al., 2011). A recent series 
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of in vitro and in vivo experiments revealed that Lactiplantibacillus plantarum improve 
fly survival by inhibiting the growth of three invasive Gram-negative bacteria through 
acidification of both internal and external environments, including culture media, fly 
food, and the gut itself, while A. tropicalis suppresses this effect by quenching acids 
(Barron et al., 2024). Microbiota-mediated priming of antiviral responses has also been 
observed in Drosophila (Sansone et al., 2015). Recent work has shown a protective role of 
Drosophila cuticular microbiota against Beauveria topical infection, preventing fungus 
establishment that is reciprocally combatted by the pathogen through secretion of a fun-
gal Defensin (Hong et al., 2023a, 2023b; Hong et al., 2022). Future studies disentangling 
the complex interplay of host-microbiota-pathogen interactions will be needed to clarify 
how the microbiota affects the Drosophila response to infection.

D.	 Drosophila endosymbionts
Drosophila melanogaster can harbor two facultative endosymbiotic bacteria, Wolba-
chia and Spiroplasma, that reside inside the host and are vertically transmitted. These 
bacteria are insect specialists with a reduced genome size and are fully integrated 
into the biology of their host. Although they are not detected by the immune system, 
these symbionts can have profound impacts on host physiology and protection against 
pathogens.

i)	 Wolbachia
Wolbachia is the most widespread and widely studied facultative endosymbiont, esti-
mated to infect 50% of all terrestrial arthropod species, including a significant fraction 
of wild and lab Drosophila strains (Clark et al., 2005; Porter and Sullivan, 2023; Weinert 
et al., 2015; Werren et al., 2008) (Figure 5A). Wolbachia resides in the cytoplasm of cells 
at high loads and colonizes germ cells to facilitate transmission (Fast et al., 2011). While 
most Wolbachia strains do not have detectable effects on D. melanogaster fitness, some 
with high proliferation rates are pathogenic (Chrostek et al., 2013; Fry et al., 2004; Min 
and Benzer, 1997). How are potentially pathogenic facultative endosymbionts main-
tained in natural populations? In many species, Wolbachia manipulates reproduction 
through cytoplasmic incompatibility to increase spread in the population, but this mech-
anism is likely less significant in the Wolbachia-Drosophila interaction (Bourtzis et al., 
1996; Yamada et al., 2007). Instead, Wolbachia has been shown to increase Drosophi-
la survival to certain viral infections (Bruner-Montero and Jiggins, 2023; Hedges et al., 
2008; Teixeira et al., 2008) (Figure 5B). This important discovery led to the use of sym-
biont-mediated protection to reduce the impact of human arboviruses transmitted by 
mosquitoes (Sinkins, 2013). It also reveals how an immune phenotype - here increased 
resistance to a virus - can be mediated by a symbiont rather than the host. The mech-
anisms behind the protective effect of Wolbachia against host viral infections are not 
fully understood, but likely do not depend on stimulation of the host immune system or 
bacterial toxins. Wolbachia protection is modulated by temperature and is dependent on 
symbiont titer, which is regulated by a group of eight genes called octomom (Chrostek et 
al., 2021; Chrostek and Teixeira, 2015). As viruses and Wolbachia co-exist in the cytosol, 
Wolbachia might alter or compete for a cytosolic factor required for virus success, such 
as cholesterol (Caragata et al., 2013; Pimentel et al., 2021; Wong et al., 2015). Protection 
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against viruses might not be the only benefit provided by Wolbachia; a recent preprint 
proposes that Wolbachia may supplement flies with pyrimidines, helping to buffer the 
effects of nutrient-poor conditions on fly development (Lindsey et al., 2023). Thus, while 
its contributions to defense are robustly confirmed, the benefits of Wolbachia to the host 
could extend beyond what is presently known.

ii)	 Spiroplasma
In contrast to cosmopolitan Wolbachia, Spiroplasma poulsonii only infects 0-5% of wild 
Drosophila and is not maintained in lab stocks, but recent advances now allow its cultiva-
tion in vitro (Haselkorn, 2010; Masson et al., 2018). Spiroplasma is an extracellular bacte-
rium with no cell wall that resides in the hemolymph of larvae and adults (Figure 6). It 
colonizes the female germline at the adult stage by co-opting the yolk uptake machinery 
(Herren et al., 2013), a mechanism also used by other insect pathogens to ensure vertical 
transmission (Brasset et al., 2006; Fukatsu, 2021; Guo et al., 2018; He et al., 2019; Huo et 
al., 2019, 2014; Wei et al., 2017). The titer of this symbiont is tightly controlled by lipid and 

Figure 5 Wolbachia, an intracellular endosymbiont
A Wolbachia in an insect cell (arrowheads). From (“Genome Sequence of the Intracellular Bac-
terium Wolbachia,” 2004) CC BY. B The presence of Wolbachia protects Drosophila males against 
DCV viral infection. Wild type males with (Wolb+) or without (Wolb-) Wolbachia. Flies were treat-
ed with tetracycline to eliminate Wolbachia. Adapted from (Teixeira et al., 2008) CC BY. 
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iron availability (Herren et al., 2014; Marra et al., 2021b). Spiroplasma poulsonii grows 
slowly and does not impact the fitness of young flies, but kills old flies.

Strikingly, S. poulsonii produces a toxin called SPAID that targets the male-spe-
cific dosage compensation (MSL) complex (Harumoto and Lemaitre, 2018; Veneti et 
al., 2005). This kills male embryos, and is thought to favor bacterial transmission by in-
creasing the proportion of infected females, perhaps through reduced larval competition 
(Martins et al., 2010; Ventura et al., 2012). Importantly, Spiroplasma increases survival 
of drosophilid flies targeted by parasitoid wasps and nematodes, providing another strik-
ing example of endosymbiont-mediated defense (Ballinger and Perlman, 2017; Jaenike 
et al., 2010; Xie et al., 2010). Spiroplasma may compete for host lipids to impede wasp 
development (Paredes et al., 2016). However, a key mechanism of Spiroplasma-mediated 
defense is the production of ribosomal toxins (RIPs) that cleave parasite ribosomal RNA 
at the sarcin-ricin loop (Ballinger and Perlman, 2017; Hamilton et al., 2016). Production 
of RIPs preferentially targets nematodes or developing wasps present in the hemolymph, 
a compartment shared with Spiroplasma. The specificity of different RIPs to different 
parasites prevents collateral damage to the host (Ballinger et al., 2019), though RIPs can 
have detrimental effects on old flies at very high titers, contributing to the reduced lifes-
pan of Spiroplasma-infected females (Garcia-Arraez et al., 2019).

Figure 6 Spiroplasma, an extracellular endosymbiont
Spiroplasma poulsonii is a facultative endosymbiont of Drosophila. Spiroplasma reside in the he-
molymph as shown by DNA staining (left), but are vertically transmitted by colonizing the oocytes 
by using the Yolk uptake machinery. This symbiont has a helical shape (right) and no cell wall. 
Credits, Drosophila: Mark Hanson clip art (CC-BY 4.0), Spiroplasma: Florent Masson, Alex Persat 
et B. Lemaitre (see also Masson et al., 2021).
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The antiviral response

Recent surveys have revealed an incredible diversity of RNA and DNA viruses, some of 
which are vertically transmitted, that infect flies in natural populations (Wallace and 
Obbard, 2023; Webster et al., 2015). It is therefore not surprising that the antiviral re-
sponse of Drosophila is complex, and in some cases, virus specific. To date, RNA inter-
ference (RNAi) is the best characterized antiviral mechanism in insects. Viruses activate 
distinct transcriptional responses in Drosophila (Kemp et al., 2013). They also impact 
host survival differently depending on the route of infection (Mondotte and Saleh, 2018). 
We note that the trend of calling every pathway or process that promotes survival to 
viral infection ‘antiviral’ has caused confusion. Although most of the immune or re-
pair signaling pathways (Toll, Imd, JAK-STAT) have been implicated in some way in 
antiviral defense, whether these pathways directly sense or eliminate viruses or instead 
primarily contribute to host disease tolerance is poorly characterized. Evidence of a ge-
neric transcriptional response to viruses in flies like the interferon response observed in 
mammals remains elusive, but promising results have recently indicated a role for the 
cGAS-STING-Relish pathway in broad antiviral defense. 

A.	 Restriction factors
Genome Wide Association Studies (GWAS) using panels from highly polymorphic wild-
type flies have revealed that host resistance to viruses is greatly impacted by a small 
number of major-effect loci (Cogni et al., 2016). Cogni and colleagues found that three 
quantitative trait loci (QTLs) were responsible for 90% of heritable resistance to Dro-
sophila C Virus infection, while five QTLs explained 42.2% of the resistance to Sigma 
virus. These studies show that pathogenicity can be determined by just a few important 
host loci. These loci explaining heritability can vary across populations (Smith et al., 
2023) or evolutionary timescales. 

Two major refractory loci, ref(2)P for Sigma virus and pastrel for DCV, have been 
well characterized, although the mechanisms by which they block virus propagation are 
still not determined. Drosophila Sigma viruses infect natural populations of D. melan-
ogaster at frequencies of 0–15% (Carpenter et al., 2007). Sigma-infected flies are para-
lyzed or killed when exposed to high concentrations of carbon dioxide, which provides 
a simple assay for detecting Sigma virus infection. A complex mutation in ref(2)P (ho-
mologous to mammalian p62) reduces the replication rate of Sigma virus (Brun and 
Plus, 1980; Contamine et al., 1989). Ref(2)P is involved in the autophagic clearance of 
cytoplasmic protein bodies (Bartlett et al., 2011) and has also been linked to Toll pathway 
activity (Avila et al., 2002). CHKov1 and Ge1 have also been identified as Sigma virus re-
striction factors, of which Ge1 is a component of P bodies involved in RNA metabolism 
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(Cao et al., 2016; Magwire et al., 2011). Similarly, a polymorphic site in the pastrel gene 
strongly affects resistance to Drosophila C virus (Magwire et al., 2012). The function of 
pastrel is unknown, but the fact that increased expression of this gene enhances protec-
tion to DCV, and that it is regulated by the cGAS-STING pathway, suggests that it could 
be an effector (Cao et al., 2017; Hédelin et al., 2024).

B.	 RNAi
Small interfering RNA in the RNA interference response (siRNAi) is a central element 
of Drosophila antiviral defense against both RNA and DNA viruses, as it is in nematodes 
and plants (reviewed in (Bonning and Saleh, 2021; Mussabekova et al., 2017)). In this 
system, the helicase RNase Dicer-2 senses long dsRNA in the cytoplasm and cleaves 
it into 21-nucleotide siRNA duplexes (Figure 7). One siRNA strand is then matured 
and incorporated into the RISC (RNA-induced silencing complex) composed of Dicer-2, 
Ago-2, and R2D2. The endonuclease Ago-2 binds the siRNA and guides the RISC to 
cytoplasmic RNA with a complementary sequence, inducing cleavage and degradation 
of the targeted RNA (Deddouche et al., 2008; Galiana-Arnoux et al., 2006; Lee et al., 
2004; Liang et al., 2015; Liu et al., 2003). The siRNAi response also controls DNA viruses 
such as Invertebrate Iridescent Virus 6 (IIV-6) (Bronkhorst et al., 2012; Jayachandran et 
al., 2012; Sabin et al., 2013), which produces dsRNA by convergent transcription using 
host-DNA-dependent RNA polymerase II (De Faria et al., 2022).

The siRNAi response has features of both innate and adaptive immunity, as it 
is activated by a molecular pattern (dsRNA) and has a high degree of specificity to its 
target. The antiviral role of the siRNAi response is clearly demonstrated by (i) enhanced 
virus proliferation and increased susceptibility in flies deficient for RNAi components 
such as Dicer-2, R2D2 or Ago-2 (Galiana-Arnoux et al., 2006; van Rij et al., 2006; Zambon 
et al., 2006), and (ii) the fact that many Drosophila viruses encode suppressors of RNAi 
(Bonning and Saleh, 2021; Bronkhorst et al., 2014; Mussabekova et al., 2017; Van Mierlo 
et al., 2014). Furthermore, RNAi genes are among the fastest evolving genes, likely as a 
consequence of a virus-host arms-race (Obbard et al., 2006). The RNAi pathway largely 
functions cell autonomously (Roignant et al., 2003), but exogenous dsRNA can be taken 
up by cells by endocytosis (Saleh et al., 2006), possibly involving the scavenger receptor 
SR-C1 (Ulvila et al., 2006).

Figure 7 The siRNAi pathway
The siRNAi pathway is a cell-autonomous response in Drosophila that targets viral RNA for cleav-
age and degradation in a series of steps: A RNA viruses produce dsRNA through viral RNA-de-
pendent RNA polymerases (RDRPs), while DNA viruses often make use of host nuclear enzymes. 
This dsRNA may be released by cell lysis and taken up by neighboring cells to propagate the siR-
NAi response. B dsRNA is bound by the RISC (RNA-induced silencing complex) loading complex 
comprised of TAF11, R2D2 and Dicer-2. Dicer-2 cleaves the dsRNA to 21-nt siRNA with a 2-nt 
overhang. C Ago-2 is recruited to activate the RISC. The passenger strand of dsRNA (red) is eject-
ed and degraded while the guide RNA (blue) is retained and stabilized by methylation (star) by 
the methyltransferase Hen1. D The RISC binds viral RNA complementary to the guide sequence 
(green), which is cleaved by Ago-2 and degraded. Several chaperone proteins (Hsc70, Hsp90, Stip1 
(also known as Hop, Hsp70/Hsp90 Organizing Protein Homolog), Droj2, p23) participate in the 
siRNA process at different steps to enhance efficiency of the response. Adapted from (Bonning 
and Saleh, 2021; Mussabekova et al., 2017). Figure created with BioRender.com, CC-BY-NC-ND.

https://www.BioRender.com
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Some evidence suggests that endogenous retrotransposons can act to form ep-
isomal chimeric DNA called vDNA containing both RNA virus and retrotransposon se-
quences (Goic et al., 2013; Karlikow et al., 2016; Poirier et al., 2018). These vDNAs can 
then produce new siRNA, amplifying and extending the duration of the RNAi-mediated 
antiviral response. The presence of episomal vDNA may provide long-lasting protec-
tion and could even be integrated into the genome to form endogenous viral elements 
with antiviral potential. Oral ingestion of DCV can provide long term protection in 
adult flies (Mondotte et al., 2018), and antiviral protection can be transmitted over 
more than five generations (Mondotte et al., 2020). These fascinating findings that 
provide evidence of priming and transgenerational effects in the antiviral response 
await confirmation by other laboratories. In another example of cross-talk between 
endogenous transposable elements and virus protection, a polymorphic transposable 
element is associated with increased resistance to Drosophila A virus (Brosh et al., 
2022). Finally, one report suggested that Dicer-2 can, in addition to its RNAi function, 
regulate a transcriptional response that includes Vago, a gene associated with antiviral 
defense (Deddouche et al., 2008).

C.	 cGAS-STING
In mammals, cyclic GMP–AMP (cGAMP) synthase (cGAS) produces the cyclic dinucleo-
tide 2′3′-cGAMP in response to cytosolic DNA to activate an antiviral interferon response 
through IRF3 and NF-κB (Decout et al., 2021). Recent studies have highlighted a simi-
lar role of the cGAS-like receptor STING-Relish pathway in the Drosophila antiviral re-
sponse (Figure 8). Two of three cGAS-like proteins encoded in the genome, cGLR1 and 
cGLR2, have been identified upstream of STING. cGLR1 is activated by double-stranded 
RNA to produce the cyclic dinucleotide 3′2′-cGAMP, whereas cGLR2 produces a combi-
nation of 2′3′-cGAMP and 3′2′-cGAMP in response to an as-yet-unidentified stimulus. 
2’3’-c-di-GMP is a potent agonist of STING signaling in Drosophila, including across spe-
cies where other cyclic dinucleotides show variable efficacy in triggering host immunity 
(Cai et al., 2023; Holleufer et al., 2021; Slavik et al., 2021). STING then activates the Imd 
pathway transcription factor Relish through IKKβ to regulate the expression of a set of 
‘STING-Regulated Genes’ (Srgs), which are potentially antiviral (Goto et al., 2018, p. 201; 
Hua et al., 2018; Segrist et al., 2021). Expression of STING itself is also down-regulated 
in Relish mutant flies, suggesting a positive feedback loop (Goto et al., 2018). Only the 
downstream part of the Imd pathway is involved in this response, indicating that Relish 
can be regulated by a ‘non-classical pathway’ to produce distinct transcriptional output 
(Schneider and Imler, 2021) (see The Humoral-Imd pathway, page 47 and Box 4, Al-
ternative modes of Imd pathway activation, page 54).

Several observations support a role of cGLR-STING-Relish in the Drosophila anti-
viral response. First, the Imd pathway has previously been implicated in viral resistance 
(Avadhanula et al., 2009; Costa et al., 2009), and silencing of IKKβ or Relish increases 
DCV replication (Goto et al., 2018). Second, several insect viruses inhibit the antiviral 
response by hijacking a suppressor of the Imd pathway named Diedel (Lamiable et al., 
2016b), or by producing enzymes called poxins that degrade 2′3′-cGAMP (Silva et al., 
2020). The existence of poxins may explain the emergence of the alternate cyclic-nu-
cleotide messenger 3’2’-cGAMP produced by cGLR1 and cGLR2. Third, injection of 
2′3′-cGAMP reduces viral titer and susceptibility in a STING-dependent manner (Cai 
et al., 2020). The recent identification of this pathway raises important questions on the 
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Figure 8 The cGLR-STING pathway
The Drosophila cGLR-STING pathway activates a distinct transcriptional response via noncanon-
ical activation of the Imd pathway transcription factor Relish. dsRNA from viral or endogenous 
sources binds the cGAS-like receptors cGLR1 and cGLR2, which produce several cyclic dinucle-
otides (CDNs) with varying ability to activate STING. CDNs bind and activate a dimeric STING 
receptor embedded in the endoplasmic reticulum, leading to activation of the IKKβ kinase and 
the transcription factor Relish. This activation likely involves Relish phosphorylation by IKKβ and 
cleavage by DREDD as in Imd signaling. How this mode of Relish activation results in a distinct 
transcriptional response from Imd signaling is not yet well understood. Transcription of STING-re-
lated genes (Srgs) and STING itself act as readouts of this pathway. Adapted from (Cai et al., 2023, 
2022; Slavik et al., 2021). Figure created with BioRender.com, CC-BY-NC-ND.

https://www.BioRender.com
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nature of the ligands involved in virus detection beyond dsRNA, and more importantly 
identification of the antiviral effectors downstream of this pathway.

STING, which is strongly enriched in the gut, might also be directly activated by 
di-nucleotides produced by bacteria. Despite compelling evidence supporting a role of 
a STING-Relish pathway in antiviral immunity, Relish mutants display only a modest 
susceptibility to systemic infection by various viruses (Ryckebusch et al., 2024). The high 
expression of STING in the gut (Leader et al., 2018) might point to a more significant role 
for this pathway in mucosal immunity. Moreover, STING has been implicated in lipid 
metabolism and autophagy, and may have broader functions beyond virus surveillance 
(Akhmetova et al., 2021). Nazo, a putative antiviral factor regulated by the STING path-
way (Goto et al., 2018), encodes the Drosophila homolog of human c19orf12 gene impli-
cated in neurodegeneration. In Drosophila, Nazo has recently been shown to have a role 
in triglyceride lipid homeostasis (Sreejith et al., 2024). Thus, it cannot be fully excluded 
that STING affects defense against viruses indirectly through a role in lipid metabolism.

D.	 Other responses to viruses
In addition to RNAi and cGAS-STING-Relish, the JAK-STAT, Toll and p38 pathways 
have been linked to antiviral defense in certain contexts, although the effects of genetic 
background were not always considered in these early studies (Dostert et al., 2005; Fer-
reira et al., 2014; West and Silverman, 2018; Zambon et al., 2005). It is unclear if these 
pathways indeed orchestrate an antiviral response sensu stricto (e.g., production of anti-
viral effectors), or instead promote repair or tolerance to cell debris and tissue damage 
induced by viruses. In addition, processes such as autophagy (Shelly et al., 2009) and 
apoptosis (Liu et al., 2013; Nainu et al., 2017; Settles and Friesen, 2008), and molecules 
including heat-shock proteins (Merkling et al., 2015), Pherokines 2/3 (Sabatier et al., 
2003), virus-induced RNA 1 (Vir-1) (Dostert et al., 2005), Vago (Deddouche et al., 2008) 
and antimicrobial peptides have been implicated in host defense to certain viruses (Feng 
et al., 2020; Hanson and Lemaitre, 2020). Hemocytes and the cellular response may also 
contribute (Lamiable et al., 2016a). Studies also suggested that Toll-7 functions as a pat-
tern recognition receptor for viruses, triggering autophagy (Moy et al., 2014; Nakamoto 
et al., 2012). However, a follow-up study did not find a role for Toll-7 in antiviral auto-
phagy (Lamiable et al., 2016a). Future studies should analyze how these processes and 
putative effectors are activated by viruses and how they affect and contribute to survival.

As viruses are expected to cause lysis of infected cells, tropism to different organs 
may cause diverse and specific pathologies. Sigma virus infects widely, but especially 
targets the cephalic and thoracic ganglia and induces paralysis after exposure to CO2 
(Longdon et al., 2012; Tsai et al., 2008), while systemic DCV infection causes intestinal 
obstruction by invading the smooth muscles surrounding the crop (Chtarbanova et al., 
2014). Flock house virus (FHV) is a cardiotropic virus, and genes such as dSUR that 
control viremia in the heart are protective (Eleftherianos et al., 2011). Moreover, cryptic 
infections such as those caused by Nora virus can affect phenotypes such as longevity in 
certain genetic backgrounds, which may act as a confounding factor in immune studies 
(Habayeb, 2006; Hanson and Lemaitre, 2023).
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The systemic antimicrobial response

Immunity in Drosophila has mostly been investigated by introducing microbes direct-
ly into the body cavity using either a needle dipped in concentrated bacteria/fungi or 
injection of a dilute bacterial solution (Neyen et al., 2014; Troha and Buchon, 2019). 
This mode of infection triggers a potent immune reaction referred to as the systemic 
response (Buchon et al., 2014; Ferrandon et al., 2007) (Figure 9). This response, which 
will be the focus of the next six chapters, consists of (i) the production of immune ef-
fectors by the fat body and hemocytes through the Toll and Imd pathways (Sections 4 
and 5), (ii) the melanization reaction (Sections 6 and 7), (iii) wound healing and dis-
ease tolerance1 mechanisms regulated by the JAK-STAT, MAPK and JNK pathways 
(Sections 7 and 8), and (iv) phagocytosis by hemocytes (i.e. insect blood cells) (Sec-
tion  9). A subset of these modules is activated depending on the characteristics of 
the infecting microbe, as exemplified by early studies showing that the Toll pathway 
is primarily activated by Gram-positive bacteria and fungi, while the Imd pathway re-
sponds to Gram-negative bacteria (Lemaitre et al., 1997, 1996; Rutschmann et al., 2002)  
(see Box 5). These reactions are supported by metabolic reprogramming to fuel protein 
production for the immune response (Sections 5C, 9E) and physiological changes that 
mitigate tissue damage caused by both host immune effectors and pathogens. Both resis-
tance and disease tolerance are intricately linked and cooperate to promote host survival 
(Galenza and Foley, 2019). The systemic response is by far the best studied immune 
reaction in Drosophila, and its study has strongly shaped our view of the insect immune 
system. We should however be aware that many of these processes may be unique to sys-
temic immunity, and that processes in other tissues such as epithelia involving the same 
molecules may not function the same way.

A.	 The humoral Toll pathway
In Drosophila, the Toll pathway is activated by microbial cell wall components (fun-
gal glucans and peptidoglycan), microbial proteases (Ferrandon et al., 2007; Lemaitre 
and Hoffmann, 2007; Royet and Dziarski, 2007), and other mechanisms that are less 
well-characterized. Microbial recognition occurs either through direct detection of 
microbes by secreted pattern recognition receptors in the hemolymph or by sensing 
perturbations in this compartment. This leads to activation of complex cascades of 

1	 Tolerance has multiple meanings in immunology, but we can distinguish disease tolerance or resil-
ience as the capacity to endure infection, and immune/self-tolerance as the ability of the immune system to 
avoid damaging self-tissues (see Multiple ways to resist infection, page 18).
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serine proteases (SPs) that bifurcate to regulate both cleavage of the neurotrophin-like 
Toll ligand Spatzle (Spz), which initiates the intracellular Toll pathway sensu stricto, 
and the melanization reaction involving phenoloxidases (POs). This extracellular cas-
cade is referred to here as the Toll-PO SP cascade, as it regulates both phenoloxidase 
cleavage and ligand-mediated activation of the Toll receptor. The Toll pathway regu-
lates expression of hundreds of genes (De Gregorio et al., 2002b). These include genes 
that encode small effector peptides such as the Bomanins and Drosomycin, but also 
many proteins involved in melanization (e.g., serine proteases, serpins), clotting (Fon-
due), and nutritional immunity (transferrin). Toll-deficient flies are viable but display 
marked susceptibility to infections by Gram-positive bacteria and fungi as well as oth-
er pathogens (Lemaitre et al., 1996; Rutschmann et al., 2002; Ryckebusch et al., 2024). 
The Toll pathway also has important roles in hematopoiesis and cellular responses 
(Louradour et al., 2017; Qiu et al., 1998). In larvae, Toll pathway activation in the fat 
body is sufficient to activate lamellocyte differentiation in peripheral compartments 
(see Systemic Immunity: Cellular response, page  91), revealing a broad impact on 
the immune response (Schmid et al., 2014).

Figure 9 The systemic immune response
Schematic overview of Drosophila systemic immune modules. Detection of microbial pathogens 
elicits an array of interconnected and synergistic defense modules in immune-responsive tissues, 
including the fat body which is an analogue of mammalian liver (Arrese and Soulages, 2010), 
and in hemocytes, the Drosophila blood cells. Lamellocytes contribute to wasp encapsulation and 
are only found in larvae (Lanot et al., 2000). SP, serine protease. Created with BioRender.com,  
CC-BY-NC-ND.

http://BioRender.com
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i)	 Recognition and Toll-PO SP signaling
The Toll pathway can be activated by a broad range of exogenous and endogenous stim-
uli including fungi, Gram-positive and Gram-negative bacteria, microbial proteases, and 
reactive oxygen species (ROS) (Figure 10). Two secreted pattern recognition receptors 
(PRRs), GNBP3 and PGRP-SA, sense fungal glucan and bacterial peptidoglycan (PGN) 
respectively, and can initiate this cascade (Gobert et al., 2003; Gottar et al., 2006; Leulier 
et al., 2003; Michel et al., 2001; Mishima et al., 2009; Pili-Floury et al., 2004). Interesting-
ly, PGRP-SA and GNBP3 are phylogenetically derived from muramidase and glucanase 
enzymes, respectively, and likely evolved as PRRs by losing catalytic activity while re-
taining binding affinity for microbial cell wall components (Hughes, 2012).

Genetic studies in Drosophila and biochemical analysis in other insects have 
shown that binding of GNBP3 to fungal β-glucan leads to activation of an apical serine 
protease, ModSP, that initiates the Toll-PO SP cascade (Buchon et al., 2009c; Takahashi 
et al., 2015; Wang and Jiang, 2007). A recent study also found a role for the highly induc-
ible GNBP-like 3 protein in preventing suppression of the Toll pathway by the entomo-
pathogenic fungus Metarhizium robertsii, which uses the effector protein Tge1 to block 
the Drosophila β-glucan receptor GNBP3 (Lu et al., 2024). ModSP is also activated by 
PGRP-SA, which can sense lysine-type peptidoglycans from Gram-positive bacteria but 
also DAP-type peptidoglycan from Gram-negative bacteria and bacilli (Filipe et al., 2005; 
Leulier et al., 2003). Although PGRP-SA seems to preferentially bind lysine-type pepti-
doglycan over DAP-type peptidoglycan, more recent studies suggest that peptidoglycan 
quantity and accessibility play an important role in responsiveness of the Toll pathway 
primarily to Gram-positive bacteria rather than Gram-negative bacteria (Atilano et al., 
2011; Leulier et al., 2003; Vaz et al., 2019). Gram-negative bacteria possess a thin layer of 
peptidoglycan hidden under a layer of lipopolysaccharide (LPS), making it inaccessible 
to secreted PRRs. In contrast, Gram-positive species expose an external thick layer of 
peptidoglycan which is accessible to secreted PRRs such as PGRP-SA when not covered 
by modifications such as teichoic acid (Box 2). Thus PGRP-SA may only be able bind to 
peptidoglycan of Gram-positive bacteria when it is accessible, for instance at the septum 
during bacterial division (Atilano et al., 2011). As described in other insects (Kim et al., 
2008; Tabuchi et al., 2010; Wang et al., 2022), binding of at least two PGRP-SA molecules 
to polymeric peptidoglycan recruits GNBP1, which functions as an adaptor to increase 
local ModSP concentration enough to undergo autoactivation (Buchon et al., 2009c; 
Filipe et al., 2005; Gobert et al., 2003; Park et al., 2007; Pili-Floury et al., 2004; Westlake 
et al., 2024). The precise localization of ModSP and the remaining Toll-PO cascade SPs 
during activation has not yet been established, and may occur at the surface of microbes, 
on lipid vesicles, or freely in the hemolymph.

ModSP cleavage triggers sequential activation of several serine proteases that 
shape the signal activating the Toll pathway and melanization response (Buchon et al., 
2009c; Chamy et al., 2008; Dudzic et al., 2019) (Figure 10). Many of these SPs are CLIP 
domain2 serine proteases, a large gene family of proteases found in insects and mollusks 

2	 The CLIP domain is a protein domain found in the N-terminal part of some serine pro-
teases involved in sequential proteolytic cascades, such as the one regulating Toll pathway during 
early embryogenesis or immunity. Among the 147 SPs and 57 SPHs (Serine Protease Homologs 
with no catalytic activity) identified in Drosophila melanogaster, 28 SPs and 14 SPHs contain a 
regulatory CLIP domain (Jang et al., 2008; Veillard et al., 2016).
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that are secreted as zymogens and activated upon cleavage by an upstream serine pro-
tease (Jang et al., 2008; Piao et al., 2005; Veillard et al., 2016). An extensive biochemical 
analysis recently showed that ModSP cleaves CLIP domain Serine Protease 48 (cSP48) 
to activate Grass, which then cleaves Persephone (Psh) and Hayan (Shan et al., 2023). 
These are two partially redundant Toll pathway regulators that cleave both (i) the Spat-
zle Processing Enzyme (SPE) to activate the Toll ligand Spatzle and the intracellular 
Toll cascade resulting in gene expression, and (ii) Sp7 and Ser7 to activate melanization 
through PPO1/PPO2 (Chamy et al., 2008; Dudzic et al., 2019; Jang et al., 2006; Kambris 
et al., 2006; Ligoxygakis et al., 2002b; Shan et al., 2023). Skanda (CG15046), a serine pro-
tease homolog with no catalytic activity encoded in the Psh-Hayan gene cluster, also ap-
pears to function with Hayan and Persephone in the activation of Spatzle (B. Lemaitre, 
unpublished). A loss-of-function mutation in SPE only partially suppresses Toll pathway 
activation by M. luteus in larvae, suggesting the existence of another Spatzle-processing 
serine protease (Yamamoto-Hino and Goto, 2016). Consistent with this, at least MP1 and 
Sp7 are also capable of cleaving Spatzle in vitro (Shan et al., 2023). Furthermore, N-glyco-
sylation of the Spatzle precursor modulates Toll pathway activation in response to infec-
tion (Yamamoto-Hino et al., 2015) and N-glycosylation is involved in immune activation 
in other contexts (see Encapsulation, page 100 and 12A, Autoimmunity, page 127). 

In addition to sensing microbial cell wall components through the pattern rec-
ognition receptors PGRP-SA and GNBP3, the Toll pathway can be directly activated by 
microbial proteases at the level of Persephone (Chamy et al., 2008; Gottar et al., 2006; 
Ming et al., 2014). Persephone (and likely Hayan) has a ‘bait region’ that can be cleaved 
by microbial proteases such as subtilisin of Baccillus subtilis, or the cuticle-degrading 
protease PR1 from entomopathogenic fungi B. bassiana and M. anisopliae (Issa et al., 
2018; Nakano et al., 2023). PR1 does not directly activate Persephone, which contains an 
unusual histidine residue that requires specific cleavage by the endogenous cathepsin 
CtsK1 (also called 26-39p) after initial processing of the Persephone bait by PR1. In con-

Figure 10 The Toll-PO SP cascade
Schematic representation of the serine protease cascade leading to Toll and phenoloxidase acti-
vation. Arrows in red indicate cleavage events that have been demonstrated biochemically but 
have not yet been shown genetically (Shan et al., 2023). Faded arrows indicate minor associa-
tions. PGRP-SA acts as a pattern recognition receptor for peptidoglycan and requires GNBP1 as a 
cofactor, while GNBP3 binds fungal glucans. Both of these receptors activate the serine protease 
cascade through the apical serine protease ModSP, which auto-activates upon clustering. Fungal 
PR1A can activate Toll by cleaving the bait region of Persephone, which is then further matured 
by the endogenous cathepsin CtsK1 (29-36p, (Issa et al., 2018)). Similar activation of Hayan has 
not yet been demonstrated, but the bait region is conserved in one Hayan isoform (Dudzic et 
al., 2019). Bacillus subtilisin can directly cleave and activate Persephone, and likely also Hayan. 
Terminal serine proteases maturate Spatzle leading to Toll activation (largely SPE, but recent 
results indicate that other proteases also participate (Shan et al., 2023)), and PPO1/2 leading to 
melanization. The non-catalytic serine protease homologs cSPH45 and cSPH242 act as cofactors 
in PPO1/2 activation by Sp7 (Jin et al., 2023). Following cleavage, mature Spatzle (Spz-C106) 
forms dimers which bind to and produce an intracellular conformational change of the Toll re-
ceptor. This allows dimerization of the Toll receptor in a 2(2 Spz : 1 Toll) complex, which initiates 
intracellular signaling. Many steps involved in the Toll-PO SP cascade are not fully established. 
Figure created with BioRender.com, CC-BY-NC-ND.

https://www.BioRender.com
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trast, processing of Persephone by the upstream SP Grass or by subtilisin is indepen-
dent of CtsK1. As proteases can act as virulence factors that pathogens employ to infect 
insects, the activation of the Toll and melanization pathways by microbial proteases is 
similar to effector-triggered immunity (ETI) which activates plant innate immunity in 
response to virulence factors (Liegeois and Ferrandon, 2022; Pradeu et al., 2024). 

The Toll-PO SP cascade is tightly regulated by serine protease inhibitors (serpins), 
which block serine proteases via a suicide mechanism3 (Reichhart, 2005). Serpins that 
negatively regulate the Toll-PO SP cascade include Necrotic (Nec), Spn1 (Fullaondo et 
al., 2011), Spn27A (De Gregorio et al., 2002a; Ligoxygakis et al., 2002c), Spn28D (Scherfer 
et al., 2008) and likely Spn5 (Ahmad et al., 2009). Mutations in these lead to constitutive 
activation of Toll (Spn1), phenoloxidases (Spn27A, Spn42a) or both (Nec, Spn5). Necrot-
ic was initially thought to be a direct inhibitor of Persephone, as mutation of persephone 
suppresses the constitutive activation of Toll observed in necrotic mutants (Ligoxygakis 
et al., 2002b). However, a recent biochemical analysis reveals that Necrotic inhibits both 
ModSP and Grass upstream of Persephone (Shan et al., 2023). Despite progress, we are 
still far from understanding the full complexity of the Toll-PO SP cascade and its regu-
lation: dozens of genes encoding SPs and serpins, some of which are upregulated upon 
infection, have not yet been functionally characterized. Furthermore, some protein asso-
ciations that have been demonstrated biochemically have not yet been validated geneti-
cally (see Supplementary list 1). 

Activation of the Toll pathway by endogenous stimuli is less well characterized, 
although reactive oxygen species (ROS) have been shown to induce Toll activity to a cer-
tain extent. Increases in ROS induce maturation of Persephone and cleavage of Spatzle 
by MP1, another CLIP serine protease (Nakano et al., 2023). Toll activation by ROS is 
also observed in other contexts: in response to injury (Chakrabarti and Visweswariah, 
2020), apoptosis and stimulation of lamellocyte production upon wasp parasitization in 
larvae (Louradour et al., 2017) (see Encapsulation, page 100). Thus, the Toll pathway 
broadly surveys the hemolymph compartment by sensing not only microbes but also 
disrupted homeostasis. 

3	 Unlike most small protease inhibitors (e.g., Kunitz-type inhibitors) that disrupt target proteases 
by a competitive (lock-and-key) mechanism, each serpin irreversibly disrupts the structure of a single target 
protease and is consumed in the process. Serpins contain a Reactive Center Loop (RCL) domain that is cleaved 
by the targeted SP, leading to a covalent ester bond between the SP and the serpin that distorts the active site 
(catalytic triad) of the SP and inhibits catalysis (Huntington, 2011; Reichhart, 2005).
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Box 2	 Structural composition of bacterial cell walls
The cell walls of bacteria are composed of many complex polymers that are specific to 
prokaryotes, and are used by eukaryotic immune systems to detect invaders. Peptidogly-
can is an essential glucopeptidic polymer restricted to the cell wall of both Gram-negative 
and Gram-positive bacteria, consisting of long glycan chains of alternating N-acetylglu-
cosamine (GlcNAc) and N-acetylmuramic (MurNAc) acid residues that are cross-linked 
to each other by short peptide bridges (Garde et al., 2021; Mengin-Lecreulx and Lemai-
tre, 2005; Vollmer et al., 2008). Gram-negative bacteria have a thin layer of peptidoglycan 
trapped between an outer lipopolysaccharide-coated lipid bilayer and the primary cell 
membrane. Lipopolysaccharide (LPS) is highly immunogenic in mammals, but Dro-
sophila appears to lack receptors for this molecule (Kaneko et al., 2004; Leulier et al., 
2003). Previous results showing activation of the Imd pathway by LPS were subsequently 
shown to be linked to the presence of contaminating peptidoglycan (notably in the LPS 
provided by SigmaTM). Gram-positive bacteria have a thick layer of peptidoglycan that is 
sometimes covered by teichoic acid. The presence of teichoic acid can impede recogni-
tion of bacteria by secreted PGRPs (Atilano et al., 2017, 2011; Attieh et al., 2019; Tabuchi 
et al., 2010). Peptidoglycan from most Gram-positive bacteria differs from Gram-negative 
peptidoglycan by the replacement of meso-diaminopimelic acid (DAP) with lysine at the 
third position in the stem peptide chain (Figure Box 2). Some groups of Gram-positive 
bacteria such as Bacillus species that include many insect pathogens and symbionts (Ba-
cillus thuringiensis, Lactobacillus) produce DAP-type peptidoglycans, but these are often 
amidated and have reduced affinity for Imd pathway pattern recognition receptors. The 
terminal monomer of DAP-type peptidoglycan of Gram-negative bacteria is called tra-
cheal cytotoxin (TCT), a molecule that strongly activates the Imd pathway. Research has 
demonstrated that the fly immune system senses polymeric and monomeric (notably 
TCT) peptidoglycans through a number of PGRP receptors to initiate immune signaling 
cascades (Aggarwal and Silverman, 2007; Kaneko et al., 2004; Leulier et al., 2003; Lim et 
al., 2006; Royet et al., 2005; Stenbak et al., 2004). To date, there is no formal evidence that 
the major immune elicitors that activate vertebrate immunity (such as LPS, flagellin, 
teichoic acid, lipoteichoic acid, or prokaryotic DNA/unmethylated CpG) can activate 
the Drosophila Toll or Imd pathways, although they may be involved in other immune 
reactions (e.g., phagocytosis, behavioral immunity).
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Figure Box 2 Structure, degradation and immune recognition of peptidoglycan
A Structure of Gram-positive and -negative cell walls. Gram-negative cell walls (left) comprise 
a single layer of peptidoglycan (PGN) trapped beneath a secondary membrane decorated with 
lipopolysaccharide (LPS). Gram-negative bacteria release small amounts of peptidoglycan when 
dividing that can be recognized by the pattern recognition receptors PGRP-LC (transmembrane), 
PGRP-LE (intracellular) and PGRP-SD (secreted) upstream of the Imd pathway (Iatsenko et al., 
2016; Kaneko et al., 2004; Leone et al., 2008; Lim et al., 2006; Neyen et al., 2012). Gram-positive cell 
walls (right) comprise many layers of peptidoglycan but lack a secondary membrane. However, 
Gram-positive bacteria may be decorated with teichoic acids, which are poly-phosphoglycerol or 
-phosphoribitol polymers covalently linked by phosphodiester bonds to (i) the C6 of the MurNAc 
in peptidoglycan, or (ii) lipids in the plasma membrane. These modifications can interfere with 
peptidoglycan recognition by immune receptors.
B Schematic of the structure of peptidoglycan. Peptidoglycan, a major component of bacterial 
cell walls, comprises a sugar backbone of repeating disaccharide units of GlcNAc (N-acetylglu-
cosamine) and MurNAc (N-acetylmuramic acid) joined by β-1,4-glycosidic linkages (red arrow). 
MurNAc bears covalently linked stem peptides (also called peptide bridges or tetrapeptides, as 
these are often composed of L-Ala-D-Glu-L-Lys/mesoDAP-D-Ala, although these can be found 
also as di, tri or pentapeptides) that are cross-linked to the stem peptides of a second sugar back-
bone. Stem peptides may incorporate mesoDAP (meso-diaminopimelic acid, typically in Gram-neg-
ative peptidoglycan) or L-lysine (typically in Gram-positive peptidoglycan) at the third position. 
In some bacteria such as Bacillus species, DAP is amidated or otherwise modified, which appears 
to reduce recognition by immune receptors (Vaz et al., 2019). Enzymes can cleave peptidoglycan 
in ways that either increase or reduce immunogenicity. SltY cleaves β-1,4-glycosidic linkages (red 
arrow) to produce peptidoglycan monomers called TCT (tracheal cytotoxin), which are highly 
diffusible and a strong elicitor of the Imd pathway (Kaneko et al., 2004; Neyen et al., 2012; Stenbak 
et al., 2004; Zaidman-Rémy et al., 2006). The immunogenicity of TCT is dependent on an internal 
1,6-anhydro bond in MurNAc. In E. coli peptidoglycan, this bond occurs naturally only at the ter-
minal end of each peptidoglycan chain, and therefore constitutes only ~5% of all GlcNAc-MurNAc 
bonds. Although muramidases such as lysozyme cleave the same bond as lytic transglycosylases 
such as SltY, muramidases fail to generate an 1,6-anhydro bond upon cleavage, and thus gener-
ate less immunogenic peptidoglycan monomers. Structural characterization of several PGRPs has 
revealed features associated with specificity to mesoDAP-versus L-lysine-type peptidoglycan, and 
presence or absence of enzymatic amidase activity (Chang et al., 2006, 2005, 2004; Kim et al., 2003; 
Leone et al., 2008; Lim et al., 2006). Amidase PGRPs, which are typically N-acetylmuramoyl-L-al-
anine amidases, remove stem peptides from the sugar backbone (blue arrow) to reduce immuno-
genicity of peptidoglycan, and may be specific to mesoDAP or L-lysine-type peptidoglycans (Gelius 
et al., 2003; Kim et al., 2003; Mellroth et al., 2003; Mellroth and Steiner, 2006; Orlans et al., 2021; 
Zaidman-Rémy et al., 2011, 2006). PGRP-LB reduces immunogenicity of both mesoDAP-type poly-
meric peptidoglycan and monomeric TCT.
C Peptidoglycan binding to PGRPs. PGRP-LCx is thought to cluster as a result of binding poly-
meric mesoDAP-type peptidoglycan, triggering association of PGRP-LCx cytoplasmic domains 
and initiating Imd signaling (left). PGRP-SA clusters on L-lysine-type peptidoglycan and activates 
Toll in a similar way. PGRP-LCx or -LCa alone do not have high affinity for TCT but form a het-
erodimeric complex that stabilizes interaction with TCT and initiates signaling (right). Adapted 
from Lim et al., 2006. Created with BioRender.com, CC-BY-NC-ND.

https://www.BioRender.com


46	 The Drosophila Immunity Handbook

ii)	 Toll signaling
Drosophila Toll is activated by the neurotrophin-like protein Spatzle (Spz) (Lemaitre et 
al., 1996; Schneider et al., 1994; Tauszig et al., 2000; Valanne et al., 2022) (Figure 11). 
A dimer composed of two mature Spatzle proteins binds one Toll receptor, causing a 
conformational change that allows dimerization of intracellular Toll domains (DeLotto 
and DeLotto, 1998; Hashimoto et al., 1988; Hu et al., 2004; Lemaitre et al., 1996; Parthier 
et al., 2014; Weber et al., 2003). While Spatzle is the main ligand activating Toll upon 
septic injury in adults, the constitutively active Spatzle-like protein Spatzle-5 (Spz5) 
may also play a role in Toll pathway activation in some contexts (Nonaka et al., 2018). 
Upon dimerization, the intracellular TIR domain of Toll recruits the adaptor MyD88 
(Tauszig-Delamasure et al., 2002). MyD88 localizes to the cell membrane by binding 
phosphatidylinositol 4,5-bisphosphate (PIP2)-rich membrane regions, and membrane 
localization is promoted by ubiquitination of MyD88 by Sherpa (Kanoh et al., 2015; 
Marek and Kagan, 2012). MyD88 recruits the adaptor Tube and the Pelle kinase through 
homotypic interactions of their death domains, leading to activation of Pelle (Galindo 
et al., 1995; Grosshans et al., 1999, 1994). Pelle phosphorylates Cactus, an IkB homo-
log, triggering its rapid proteasomal degradation (Belvin et al., 1995; Daigneault et al., 
2013; Geisler et al., 1992; Nicolas et al., 1998). Degradation of Cactus releases the NF-κB 
transcription factors Dif and Dorsal, which then translocate into the nucleus and acti-
vate the Toll transcriptional program (Ip et al., 1993; Lemaitre et al., 1995a; Reichhart 
et al., 1993; Valanne et al., 2022). Dif (Dorsal-related immunity factor) and Dorsal are 
encoded by two clustered genes arising from a recent duplication that have overlapping 
but distinct functions that have not yet been fully clarified4. However, Dif plays a more 
important role in adult host defense, while only Dorsal is involved in embryonic dorso-
ventral patterning (Gross et al., 1996; Lemaitre et al., 1995a; Manfruelli et al., 1999; Meng 
et al., 1999; Rutschmann et al., 2000a). Note however that widely used Dif mutants may 
display a weaker phenotype than initially published (Le Bourg, 2011).

The intracellular part of the Toll pathway is very similar to the Toll-like recep-
tor (TLR) NF-κB cascade that regulates innate immunity in mammals, emphasizing the 
conserved role of this pathway in innate immunity (Gay and Keith, 1991; Lemaitre et 
al., 1996; Schneider et al., 1991). There are however three notable differences between 
Toll signaling in Drosophila and TLR-NF-κB signaling in mammals: (i) TLRs are pat-
tern recognition receptors that directly sense microbial molecules (‘MAMPs’) (Brennan 
and Gilmore, 2018; Leulier and Lemaitre, 2008) whereas in Drosophila the endogenous 
Spatzle proteins act as Toll receptor ligands; (ii) Drosophila Tube has no homolog in 
mammals, and is considered a degenerate copy of the Pelle/IRAK kinase that serves as a 
scaffold for Pelle (Sun et al., 2004); and (iii) the Drosophila IRAK homolog Pelle directly 
phosphorylates the IkB homolog Cactus, while in mammals IkB is phosphorylated by 
the IκB-kinase (IKK) (Daigneault et al., 2013).

The Toll pathway has many other functions beyond immunity in Drosophila, 
including regulation of early embryonic dorsoventral patterning, muscle attachment, 
and wound healing (Belvin and Anderson, 1996; Capilla et al., 2017; Green et al., 2016; 

4	 Both Dorsal and Dif express a B isoform that contains the Rel homology domain (RHD) but lacks 
the nuclear localization domain. These B isoforms are conserved in other species. The function of the B iso-
form is poorly defined, but Dorsal B seems to play a major role at neuromuscular junctions (Gross et al., 1999; 
Zhou et al., 2015).
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Halfon and Keshishian, 1998). Although there are nine Toll genes in the Drosophila 
genome, only Toll-1 (Toll) is confidently implicated in Drosophila immunity (but see 
Akhouayri et al., 2011; Bettencourt et al., 2004; Lamiable et al., 2016a; Nakamoto et al., 
2012; Narbonne-Reveau et al., 2011; Ooi et al., 2002; Tauszig et al., 2000) for proposed 
involvement of Tolls 8, 7 and 9 in immunity). Other Drosophila Toll homologs have been 
implicated primarily in development and brain plasticity (Anthoney et al., 2018; Li et al., 
2020b; Li and Hidalgo, 2021; Lindsay and Wasserman, 2014; McIlroy et al., 2013; Paré et 
al., 2014; Ward et al., 2015).

Mutations in genes encoding the canonical components of the Toll pathway (Spz, 
Toll, MyD88, Tube, Pelle, Dif/Dorsal) in flies cause high susceptibility to Gram-positive 
bacteria and fungi, as well as many other microbes including some Gram-negative bacte-
ria and viruses (Ferreira et al., 2014; Lau et al., 2003; Lemaitre et al., 1996; Zambon et al., 
2005). Over the years, many other proteins have been identified that are involved directly 
or indirectly in Toll pathway activation. This includes proteins that mediate endocyto-
sis of the Toll receptor, a process that is essential for activation of this signal cascade 
(Huang et al., 2010; Lund et al., 2010) (see Box 6, Immunity and the endocytic machin-
ery, page 99); several E3 ubiquitin ligases; and sumoylation enzymes, which can have 
both positive and negative regulatory effects at different levels of the Toll pathway (Fig-
ure 11, see Supplementary list 1). Finally, new evidence suggests that the intracellular 
Toll pathway may be independently activated by cGMP produced by the receptor-type 
guanylate cyclase Gyc76 in response to bacterial infection (Iwashita et al., 2020; Kanoh 
et al., 2021).

B.	 The humoral Imd pathway 
The Imd pathway is activated by DAP-type peptidoglycans produced by Gram-negative 
bacteria and a subset of Gram-positive bacteria (e.g., Bacillus sp.) (Aggarwal and Silver-
man, 2008; Kleerebezem et al., 2010; Lemaitre et al., 1995b; Lemaitre and Hoffmann, 
2007; Mengin-Lecreulx and Lemaitre, 2005; Royet et al., 2005). Binding of peptidogly-
can to receptors of the PGRP family (PGRP-LC, PGRP-LE) initiates an intracellular sig-
naling cascade whose components share homology with both the TNFα-Receptor and 
TLR pathways of mammals. This ultimately results in cleavage and phosphorylation of 
Relish, an NF-κB factor that includes a self-inhibiting ankyrin domain (Hedengren et 
al., 1999; Stoven et al., 2000). The Imd pathway regulates the expression of many genes 
encoding effectors such as antibacterial peptides, serine proteases, and transferrin (De 
Gregorio et al., 2002b). Imd-deficient flies are viable but display acute susceptibility to 
Gram-negative bacterial infection (Lemaitre et al., 1995b; Leulier et al., 2000; Rycke-
busch et al., 2024). While the Imd pathway was initially described for its regulation of 
the antibacterial response, it has now been implicated in many other processes such as 
apoptosis, cell competition, delamination, regulation of digestive enzymes, and synaptic 
plasticity (Combe et al., 2014; Georgel et al., 2001; Harris et al., 2015; Meyer et al., 2014; 
Zhai et al., 2018a, 2018b).

i)	 Imd recognition 
While PRRs of the Toll pathway can bind bacteria and fungi, PRRs of the Imd pathway 
are activated by peptidoglycan fragments that are released from below the protective LPS 
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layer by Gram-negative bacteria or from the surface of Bacillus during division or upon 
death. The Imd pathway is activated by extracellular peptidoglycan through PGRP-LC, 
a transmembrane receptor with three active isoforms, -LCx, -LCa and -LCy, that differ 
in their PGRP domain (Choe et al., 2005, 2002; Gottar et al., 2002; Rämet et al., 2002b)
(Figure 12). The major isoform PGRP-LCx has a PGRP domain that can bind DAP-type 
peptidoglycan, while PGRP-LCa and -LCy function as co-receptors (Chang et al., 2006, 
2005; Kaneko et al., 2004; Lim et al., 2006; Stenbak et al., 2004). Functional and structur-
al studies have shown that homodimers of PGRP-LCx are activated by polymeric pep-
tidoglycan, while PGRP-LCx/LCa heterodimers bind peptidoglycan monomers called 
tracheal cytotoxin (TCT, Box 2). TCT is the terminal unit of Gram-negative bacterial 
peptidoglycans released upon cell division and is not found in Gram-positive bacteria 
(Mengin-Lecreulx and Lemaitre, 2005). TCT is produced by live bacteria and can be con-
sidered an alarmin that signals active danger, more so than polymeric peptidoglycan 
which is released by dead bacteria (Neyen et al., 2012; Pradeu et al., 2024). Consistent 
with this, TCT tends to activate a stronger and more persistent immune response than 
polymeric peptidoglycan (Neyen et al., 2016).

PGRP receptor homologs also function as negative regulators of signaling. Regu-
latory isoforms (rPGRP-LC) of PGRP-LCx, -LCy and -LCa with distinct intracellular do-
mains adjust Imd pathway activity by forming non-productive complexes and promoting 
endocytic removal of PGRP-LC from the membrane (Neyen et al., 2016). Rapid endoso-
mal recycling of PGRP-LCx by rPGRP-LC and degradation of polymeric peptidoglycan 
may explain why polymeric peptidoglycan elicits a shorter response compared to TCT, 
which is sensed by PGRP-LCx/a (Neyen et al., 2016) (see Box 6). PGRP-LF is a transmem-
brane protein with two PGRP domains that cannot bind peptidoglycan but interacts with 
and negatively regulates PGRP-LC. Loss of PGRP-LF function leads to signal indepen-
dent activation of the Imd pathway (Basbous et al., 2011; Maillet et al., 2008; Persson et 
al., 2007; Tavignot et al., 2017). PGRP-LF mutants are viable but short lived, and display 

Figure 11 The Toll signaling pathway
Schematic of Toll receptor activation and intracellular signal transduction leading to gene tran-
scription. Activation of the Toll receptor through Spatzle binding and dimerization triggers endo-
cytosis of the receptor and subsequent signaling events. Scaffold proteins MyD88 and Tube and 
the kinase Pelle localize to the membrane in a process promoted by the E3 ubiquitin ligase Sherpa 
(Galindo et al., 1995; Kanoh et al., 2015; Sun et al., 2004). The E3 ligase Pellino ubiquitinates 
MyD88 in a fashion that promotes its proteasomal degradation and modulates Toll pathway ac-
tivity (Ji et al., 2014). Pelle phosphorylates Cactus, leading to its degradation and release of Dif 
and Dorsal transcription factors (Daigneault et al., 2013; Ip et al., 1993; Lemaitre et al., 1995a). 
Dif and Dorsal are phosphorylated by an unknown kinase. The E3 ubiquitin ligase SCF complex 
promotes Toll signaling by enhancing Cactus degradation and promoting release of the Dif and 
Dorsal transcription factors (Khush et al., 2002). Sumoylation affects several steps of the intracel-
lular Toll cascade and has both positive and negative regulatory effects at different steps (Chiu et 
al., 2005; Hegde et al., 2022, 2020; Koltun et al., 2017; Paddibhatla et al., 2010). Most components 
of the Toll pathway were identified for their role in embryonic dorsoventral patterning, and later 
shown to have roles in immunity and other functions (Belvin and Anderson, 1996; Hashimoto 
et al., 1988; Horng and Medzhitov, 2001; Lemaitre et al., 1996; Nusslein-Volhard and Wieschaus, 
1980; Tauszig-Delamasure et al., 2002). Canonical components of the Toll pathways include Spat-
zle, Toll, MyD88, Tube, Pelle, Cactus, Dif and Dorsal. Figure created with BioRender.com, CC-BY-
NC-ND.

https://www.BioRender.com
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constitutive NF-κB/Imd activation specifically in ectodermal tissues, leading to genitalia 
and tergite malformations (Tavignot et al., 2017). Peptidoglycan sensing by PGRP-LC is 
also shaped by two secreted PGRPs, PGRP-LB and -SD. In contrast to PGRPs that func-
tion as pattern recognition receptors (PGRP-LC, -SD, -LE, and -SA), PGRP-LB retains 
a PGRP domain with amidase-type enzymatic activity that cleaves the peptide bridge 
from the glycan backbone (Box 2). This cleavage by PGRP-LB converts DAP-type pepti-
doglycan into non-immunostimulatory fragments, dampening Imd pathway activation 
(Zaidman-Rémy et al., 2006). In contrast, PGRP-SD, a true PRR, binds DAP-type pepti-
doglycan and promotes Imd pathway activation by either sequestering it from PGRP-LB 
or delivering it to PGRP-LC at the membrane (Iatsenko et al., 2016; Leone et al., 2008). 
As these two PGRPs are themselves regulated by the Imd pathway, they establish posi-
tive (PGRP-SD) and negative (PGRP-LB) feedback loops, fine-tuning immune reactivity 
of the Imd pathway. Other amidase PGRPs, notably PGRP-SC2 and -SC1a/b, may also 

Figure 12 The Imd signaling pathway
Schematic of the Imd signaling pathway. Tissue-specific regulators of Imd pathway activity (e.g., 
Trabid, LUBEL) are not shown. Peptidoglycan binding results in clustering of PGRP-LC (trans-
membrane) or PGRP-LE (intracellular) receptors. PGRP-SD is a secreted recognition receptor 
that promotes DAP-type peptidoglycan sensing by PGRP-LC (Iatsenko et al., 2016). Association of 
cRHIM domains on the PGRP-LE receptor or the intracellular portions of PGRP-LC trigger amy-
loid fibril formation in association with the cRHIM domains of Imd, and result in recruitment of 
FADD and DREDD (Kleino et al., 2017; Kleino and Silverman, 2014). Ubiquitination of DREDD 
by DIAP2 is required for cleavage of both Relish and Imd (Meinander et al., 2012). Imd cleavage 
exposes an IBM (IAP-binding motif) which recruits DIAP2 (Paquette et al., 2010). DIAP2 ubiq-
uitinates itself, Imd, TAK1, and Kenny (IKKγ) in addition to DREDD, and generally functions to 
increase association between signaling proteins. Ubiquitination by DIAP2 allows Imd to recruit 
the TAK1 kinase through TAB2, a structural protein. TAK1 phosphorylates Kenny and itself to 
promote pathway activity, while TAK1 phosphorylation of Imd promotes a change in ubiquitina-
tion (K63 à K43, perhaps mediated by dUsp36) that enhances proteasomal degradation of Imd, 
generating inhibitory feedback. Phosphorylation of Kenny activates the IKK complex, leading to 
phosphorylation of Relish by IKKβ. Sumoylation of IKKβ also promotes IKK complex activity. 
Cleavage of Relish to produce Rel-68 allows translocation to the nucleus, while phosphorylation 
is required for full transcriptional activity. Imd pathway activity is extensively regulated at the 
receptor, signaling, and transcriptional levels. Amidase PGRPs with tissue-specific expression pat-
terns cleave peptidoglycan to reduce receptor stimulation (Charroux et al., 2018; Costechareyre 
et al., 2016; Paredes et al., 2011; Zaidman-Rémy et al., 2006). Some ubiquitin editing events pro-
mote proteasomal degradation of signaling intermediates. Relish promotes transcription of the 
positive regulator PGRP-SD and negative regulators including amidase PGRP-LB and Pirk. Pirk 
disrupts amyloid fibril formation and signaling by PGRP receptors. JNK signaling also increases 
Drice caspase activity, which suppresses DIAP2 activity and Imd signaling in the gut (Kietz et al., 
2022). Canonical members of the Imd pathway include positive regulators PGRP-SD, PGRP-LC, 
PGRP-LE, Imd, DIAP2, FADD, DREDD, TAK1, TAB2, IKKβ (ird5), Kenny (IKKγ) and Relish, and 
negative regulators Pirk and PGRP-LB, which has both cytosolic and extracellular isoforms. Note 
that TAK1 and TAB2 also function in the JNK pathway, such that pattern recognition through 
upstream Imd induces low-level JNK activation. Compiled with data from: (Erturk-Hasdemir et 
al., 2009; Fukuyama et al., 2013; Guntermann et al., 2009; Kaneko et al., 2006, p. 200; Kietz et al., 
2022; Kleino et al., 2017; Lhocine et al., 2008; Neyen et al., 2016; Paquette et al., 2010; Park et al., 
2004; Silverman, 2000; Stoven et al., 2003; Zhou et al., 2005). Figure created with BioRender.com, 
CC-BY-NC-ND.

https://www.BioRender.com
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regulate the Imd pathway by degrading peptidoglycan in specific tissues (Bischoff et al., 
2006; Costechareyre et al., 2016; Guo et al., 2014; Paredes et al., 2011). PGRP-LA encodes 
multiple isoforms and clusters with PGRP-LC and -LF in the genome, but unlike these 
genes the precise function for PGRP-LA is not clear (Gendrin et al., 2013). Studies done 
in mosquitoes and Drosophila however suggest a role for PGRP-LA in regulating Imd 
pathway activity in epithelia such as the trachea and gut (Gao et al., 2020; Gendrin et al., 
2017, 2013).

The Imd pathway can also be activated Intracellularly by binding of monomeric 
peptidoglycan (TCT5) to the intracellular sensor PGRP-LE, which recruits Imd as PGRP-
LC does to initiate downstream signaling (Kaneko et al., 2006; Takehana et al., 2004, 
2002). The mechanisms by which TCT accesses the cytosol are not yet fully understood, 
but the SLC46 family transporter CG8046 has been shown to facilitate translocation of 
TCT and promote its recognition by PGRP-LE in the gut (Paik et al., 2017). A cytoplasmic 
form of PGRP-LB can down-regulate PGRP-LE activation by degrading intracellular pep-
tidoglycan, similar to its extracellular counterpart (Charroux et al., 2018). While PGRP-
LC is the main sensor regulating the systemic immune response, PGRP-LE dominates 
in the midgut (Bosco-Drayon et al., 2012; Neyen et al., 2012) (see Figure 28). PGRP-LE 
may also contribute to immune activation and autophagy in response to bacteria that 
invade the cytoplasm, such as Listeria (Yano et al., 2008). Although the Imd pathway has 
been linked to autophagy (Liu et al., 2018; Nandy et al., 2018; Tsapras et al., 2022; Tusco 
et al., 2017), the involvement of PGRP-LE in the control of autophagy has not received 
direct follow up. The Imd pathway can also be activated through a number of alternative 
mechanisms (Box 3).

ii)	 Imd signaling
Peptidoglycan binding induces clustering of PGRP-LC (Box 2) or PGRP-LE, initiating a 
complex intracellular signaling cascade that involves the recruitment of Imd, FADD and 
the DREDD caspase, which cleaves Imd. Imd binds the ubiquitin ligase DIAP2 (Box 4) 
and leads to activation of the TAK1/TAB2 complex, which also participates in the JNK 
pathway (Elrod-Erickson et al., 2000; Georgel et al., 2001; Kaneko et al., 2004; Kleino 
and Silverman, 2014; Leulier et al., 2002, 2000; Naitza et al., 2002; Silverman et al., 2003; 
Stoven et al., 2000; Takaesu et al., 2000; Vidal et al., 2001). The MAP3K6 TAK1 then phos-
phorylates Kenny (IKKγ), which together with IKKβ (ird5) forms the IKK complex (Er-
turk-Hasdemir et al., 2009; Lu et al., 2001; Rutschmann et al., 2000b; Silverman, 2000). 
Cleavage of Relish by DREDD allows it to translocate to the nucleus, while phosphory-
lation of Relish by IKKβ fully potentiates its ability to transactivate Imd-mediated genes 
(Erturk-Hasdemir et al., 2009).

During Imd pathway activation, intracellular cRHIM domains of clustered PGRP-
LC or PGRP-LE proteins form amyloid fibrils that recruit Imd and activate downstream 
signaling (Kleino et al., 2017). An inducible negative regulator, Pirk, disrupts these amy-

5	 While it is clear that TCT (tracheal cytotoxin, a DAP-type peptidoglycan monomer with an anhydro 
bond) can strongly activate PGRP-LE and the Imd pathway, other DAP-type peptidoglycan monomers (lacking 
the anhydro bond) appear to be less potent inducers (Stenbak et al., 2004).
6	 MAP3Ks are Mitogen-Activated Protein Kinase Kinase Kinases. MAPKs or MAP kinases are 
serine/threonine-specific protein kinases which are often sequentially activated: MAP3Ks phosphorylate 
MAP2Ks that in turn phosphorylate MAPKs, which in turn activate transcription factors including AP-1 (see 
Figure 18).
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Box 3	 Alternative modes of Imd pathway activation
Much is still unknown of mechanisms activating the Imd pathway. For example, we do 
not know the identity of ligand or elicitor that mediates strong activation of the Imd 
pathway during septic infection with fungi (Lemaitre et al., 1997), or alternatively if this 
is due to the presence of contaminants or the injury itself. The role of PGRP-LCy remains 
unknown. Kosakamoto and collaborators found that neither heat-killed Gluconobacter 
bacteria nor smaller secreted molecules (<10kDa) in the culture medium were immu-
nogenic when fed to flies, but the fraction of supernatant containing large molecules 
(>10kDa) was highly immunogenic, similar to feeding with live bacteria (Kosakamoto 
et al., 2020). This suggests that the molecule(s) responsible for activating Imd in the 
gut in response to Gluconobacter are large proteins such as proteases. Moreover, reports 
have suggested that in addition to PRR-mediated recognition of DAP-type peptidogly-
can, the Imd pathway can be activated by proteolytic cleavage of PGRP-LC extracellular 
domain (Schmidt et al., 2007). One study found that infection with both B. subtilis and 
S. aureus (Gram-positive bacteria with DAP- and lysine-type peptidoglycan respective-
ly) resulted in cleavage of the PGRP-LC-GFP extracellular domain, which accumulated 
in the extracellular space around bacteria (Vaz et al., 2019). Similarly, in Drosophila S2 
cells an allergen-derived cysteine protease from dust mites can activate the Imd pathway 
through cleavage of PGRP-LC (Warmbold et al., 2013). Finally, it has been proposed 
that activation of Imd signaling in the gut triggers hemocyte-mediated accumulation of 
hemolymph polyols, which upregulate the matrix metalloprotease Mmp2 and lead to 
cleavage of the PGRP-LC ectodomain at the surface of fat body cells, activating systemic 
Imd signaling (Yang et al., 2019). While many studies confirm that ectodomain-deleted 
PGRP-LC acts as a constitutive activator of the Imd pathway (Choe et al., 2005; Maillet et 
al., 2008; Warmbold et al., 2013), it remains to be seen whether cleavage of PGRP-LC is a 
significant factor contributing to Imd activation in vivo.

The RhoGTPase Rac2 may also directly activate Imd when modified by bacterial 
toxins similar to activation of immunity through RIP kinases in humans (Boyer et al., 
2011). In addition, one study showed that the Imd pathway can be activated in enteroen-
docrine cells of the midgut by microbiota-derived acetate (Kamareddine et al., 2018). As 
previously mentioned, Relish can also undergo alternative activation by cGAS-STING 
(see Figure 8). This mode merges with the canonical Imd pathway at the level of IKKβ 
and does not involve upstream components of the pathway such as Imd. cGAS-STING 
regulates a set of STING-regulated genes (Srgs) independent of PGRP-LC-Imd-Relish 
target genes in the fat body (Goto et al., 2018). Future studies are required to better char-
acterize alternative modes of Imd pathway activation beyond the well-established roles 
of monomeric and polymeric DAP-type peptidoglycans. 
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Box 4	 Modulation of the Imd pathway by  
ubiquitination and sumoylation

The intracellular Imd pathway is modulated by multiple ubiquitination and sumoylation 
events with complex positive and negative regulatory effects (Aalto et al., 2019; Handu 
et al., 2015; Meinander et al., 2012; Paquette et al., 2010; Prakash et al., 2021; Tang et 
al., 2021; Tusco et al., 2017). Ubiquitination and sumoylation result in covalent attach-
ment of small protein ‘tags’ to target proteins. Ubiquitination typically either increases 
binding and recognition by other proteins and facilitates pathway activity by promoting 
protein-protein interactions, or alternately targets proteins for proteasomal degradation, 
resulting in a suppressive effect. Increased protein-protein interactions upon ubiquitina-
tion are often mediated by ubiquitin-binding Zinc Finger (ZnF) domains. Ubiquitinated 
proteins can also form aggregates in association with the Drosophila p62 protein Ref(2)P, 
which targets them for autophagy and degradation, similar to mammalian p62 (e.g., 
(Lindmo et al., 2008)). p38 signaling is also involved in autophagosomal degradation of 
ubiquitinated protein aggregates, which may include intermediates in immune signaling 
(Belozerov et al., 2014; Ryan et al., 2021).

Some ubiquitin ligases such as DIAP2, which modifies multiple components of 
the Imd pathway including itself, are essential for Imd pathway activation (Huh et al., 
2007; Kleino et al., 2005; Leulier et al., 2006; Zhou et al., 2005). Many additional ubiqui-
tin ligases and ubiquitinases modify Imd pathway activity (Caspar, Dnr1, Usp36, LUBEL, 
POSH, Trabid, CYLD), Toll pathway activity (Sherpa, Pellino), or both (SCF complex), 
some in a tissue-specific manner (Aalto et al., 2023). The ubiquitin ligase POSH is re-
quired for both Imd and JNK pathway activity (Tsuda et al., 2005, Zhang et al., 2010). 
Sequential ubiquitin editing of a single target by multiple proteins can fine-tune activity 
within an immune pathway to restore homeostasis following immune challenge (Chen 
et al., 2017).

Sumoylation similarly modulates pathway activity, primarily by regulating 
cell-surface localization of proteins, or by modifying transcription factor activity by 
affecting protein stability and protein-protein interactions. Sumoylation of IKKβ is re-
quired for full Imd pathway activity (Fukuyama et al., 2013). All three Drosophila NF-κB 
transcription factors (Dif, Dorsal, and Relish) are sumoylated, but the effects of these 
modifications are not yet well understood (Hegde et al., 2020; Tang et al., 2021). Immune 
roles of proteins involved in ubiquitination and sumoylation must be interpreted with 
caution, as they often participate in a multitude of processes and can have complex ef-
fects when mutated that may indirectly affect immune function.
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loid fibrils and disconnects Imd from PGRP receptors to attenuate Imd pathway signaling 
(Aggarwal et al., 2008; Kleino et al., 2008; Lhocine et al., 2008). Multiple systems prevent 
overactivation of the Imd pathway. In addition to the previously mentioned negative reg-
ulators PGRP-LB, Pirk, and PGRP-LF, there are also conditional or tissue specific negative 
regulators of Imd such as Dnr1, Caspar, Trabid, Ubiquitin-specific proteases (Usp36/Scny, 
USP2 and USP34/Puf), CYLD and the amidase PGRPs PGRP-SC2/PGRP-SC1A/1B (Engel 
et al., 2014; Foley and O’Farrell, 2004; Guntermann et al., 2009; Kim et al., 2006; Thevenon 
et al., 2009; Tsichritzis et al., 2007; Costechareyre et al., 2016; Paredes et al., 2011). Process-
es such as some forms of ubiquitination that promote rapid proteasomal degradation of 
Imd pathway intermediates (Box 4) also prevent immune overactivation, which can have 
widespread adverse effects. The existence of many negative regulators at each step of the 
Imd pathway indicates that this pathway must be tightly controlled to avoid tissue damage, 
similar to the TNF-R pathway (Aggarwal and Silverman, 2008). Imd signaling is fine-tuned 
by several ubiquitination and sumoylation events, which may be tissue-specific (Box 4).

C.	 Cross talk between Toll and Imd pathways
Use of specific gene readouts revealed that Toll and Imd are separate pathways that can 
be selectively activated by different classes of microbes: natural infection with entomo-
pathogenic fungus activates only Toll, while natural infection with Gram-negative bacte-
ria activates mostly Imd (Basset et al., 2000; Lemaitre et al., 1997). Septic injury activates 
both pathways, but relative strength of activation depends on the characteristics of the 
introduced microbe. Thus, selective action of these pathways provides a degree of speci-
ficity to the systemic immune response (Lemaitre et al., 1997) (Box 5). The Imd pathway 
regulates many genes with an early acute phase profile and faster kinetics than Toll-me-
diated genes (De Gregorio et al., 2002b; Lemaitre et al., 1997; Rutschmann et al., 2000a). 
Although subsets of genes that are specific to one of the two pathways exist, many im-
mune genes receive input from both pathways to differing extents. This cross-regula-
tion can be due to several factors. At the promoter level, genes appear to contain NF-κB 
binding sites with different specificities for combinations of the Dorsal, Dif, and Relish 
transcription factors (Senger et al., 2006). Regulation by Dorsal, Dif, and Relish heterod-
imers also remains possible (Tanji et al., 2010), which could explain some complex ex-
pression patterns (Figure 13). Binding sites near NF-κB sites for transcription factors 
such as the GATA factor Serpent, the homeobox transcription factor Caudal, or Deaf1 
may modify NF-κB affinity or independently shape general or tissue-specific expression 
patterns of both Toll and Imd-regulated genes (Busse et al., 2007; Choi et al., 2008; Eng-
strom et al., 1993; Kadalayil et al., 1997; Kappler et al., 1993; Önfelt Tingvall et al., 2001b; 
Petersen et al., 1999; Reed et al., 2008). Studies of the nuclear IκB Charon/Pickle have 
produced somewhat contradictory results, but this protein may interact with the histone 
deacetylase dHDAC1 to selectively repress activity of Relish homodimers and skew tran-
scriptional output (Morris et al., 2016) or promote Relish association with certain NF-κB 
binding sites (Han et al., 2020; Ji et al., 2016). Some processes such as sumoylation, SCF 
complex activity, and endocytosis influence both Toll and Imd pathways with variable 
effects (Huang et al., 2010; Khush et al., 2002; Tang et al., 2021) (Box 4, Box 6).

Many genes encoding components of the Imd and Toll pathways are themselves 
induced upon infection, modulating the immune response. Immunity genes are also 
under hormonal control, notably by ecdysone, the master hormone controlling molting 
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Figure 13 Immune gene promoters integrate Toll- and Imd-pathway activity
The Toll and Imd NF-κB transcription factors Dif, Dorsal, and Relish are the primary regulators of 
the systemic immune response. However, many additional regulators contribute to the ultimate 
expression pattern of immune genes. Provided are annotations of cis-regulatory elements found 
in the upstream region of four representative effector genes, regulated mostly by the Toll pathway 
(BomS5), mostly by the Imd pathway (Diptericin A) or partially by both pathways (Metchnikowin 
or Drosomycin) (Clemmons et al., 2015; Lemaitre et al., 1997; Levashina et al., 1998). Annota-
tions were built from literature synthesis and manual curation (Busse et al., 2007; Copley et al., 
2007; Dearolf et al., 1989; Hanson et al., 2021; Reed et al., 2008; Reichhart et al., 1992; Ryu et al., 
2004; Senger et al., 2006). Gene expression patterns upon clean injury or septic infection with a 
Gram-negative (E. coli) or Gram-positive (M. luteus) bacteria are approximations from (Troha et 
al., 2018). Overall, the proportion of NF-κB binding sites for each pathway correlates broadly with 
inducibility by respective pathways. Gene induction is commonly reported in the literature as rel-
ative fold change compared to unchallenged. However, due to differences in basal expression of 
genes, this obscures the realized expression of these genes relative to one another, shown here as 
transcripts per million.

and metamorphosis (Meister and Richards, 1996; Nunes et al., 2021). Ecdysone affects 
Imd pathway-mediated AMP expression by regulating both PGRP-LC and GATA fac-
tors (Keith, 2023; Rus et al., 2013). Ecdysone also affects fat body maturation which 
can strongly impact protein production for both pathways (Ligoxygakis et al., 2002a). 
All of these factors contribute to the complexity of the systemic immune response, 
where microbes elicit specific gene expression profiles that extend beyond the classical 
Gram-negative versus Gram-positive dichotomy (Troha et al., 2018) (Box 5).
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While the bulk of host defense peptides produced during systemic infection 
are secreted by the fat body, hemocytes are thought to provide a small contribution. 
Use of gene reporters and single cell RNAseq studies have found that a distinct class 
of plasmatocytes seems to specialize in AMP production (Cattenoz et al., 2021, 2020; 
Hultmark and Andó, 2022). Hemocytes may contribute primarily by supplying effec-
tors locally to specific sites or tissues. Although immune responses in the hemocytes 
and fat body both rely on Toll and Imd, there are differences in transcriptional output 
between these two tissues and according to life stage (Vaibhvi et al., 2022). Other tis-
sues such as Malpighian tubules might also contribute to the systemic antimicrobial 
response (Davies et al., 2012).

Not surprisingly, the Toll and Imd pathways interact with many other signaling 
pathways including Hippo (Liu et al., 2016; Yang et al., 2024) and JNK (Boutros et al., 
2002; Li et al., 2020b; Silverman et al., 2003). Liu and colleagues found that the Cactus 
kinase Pelle can promote Hippo pathway activity in the fat body, resulting in direct York-
ie-dependent suppression of cactus transcription and increased Toll activity. Toll path-
way activation in the fat body also suppresses growth and nutrient storage through insu-
lin signaling (Roth et al., 2018) (see Hemocytes are a central metabolic hub, page 104). 
Some studies indicate that Toll activity contributes to JNK-mediated cell death by pro-
moting ROS production (Li et al., 2020b; Wu et al., 2015). As the Imd and JNK pathways 
share several components including the TAK1/TAB2 complex, infection transiently acti-
vates JNK signaling through upstream components of Imd (Boutros et al., 2002; De Gre-
gorio et al., 2001; Silverman et al., 2003) (Figure 12, Figure 18). Overactivation of Imd 
signaling leads to apoptosis in several contexts (e.g., (Georgel et al., 2001; He et al., 2017; 
Paredes et al., 2011; Ryu et al., 2008; Shibata et al., 2013; Zhai et al., 2018a)), but can also 
suppress JNK activity through upregulation of DIAP1 during development (Tavignot 
et al., 2017). Some components of the Toll and Imd pathways also contribute to other 
processes such as cell competition (Alpar et al., 2018; Germani et al., 2018.; Katsukawa 
et al., 2018; Meyer et al., 2014), that appear to be separate from their roles in immunity. 

Box 5	 On the Gram-positive/Toll Gram-negative/ 
Imd dichotomy 

In the early nineties, the concept of innate immunity was defined by the fact that it 
lacked specificity and memory (Pradeu et al., 2024). However, later work in Drosophila 
revealed the existence of two signaling pathways, Imd and Toll, that when disrupted 
produce acute susceptibility to different classes of microbes: Gram-positive bacteria and 
fungi for Toll (Lemaitre et al., 1997, 1996; Rutschmann et al., 2002), and Gram-negative 
bacteria for Imd (Lemaitre et al., 1995b; Leulier et al., 2000; Rutschmann et al., 2000b). 
The use of reporter genes, notably Diptericin A for Imd and Drosomycin for Toll*, revealed 
that these pathways can similarly be selectively activated by different classes of microbes. 

* 	 While Diptericin is tightly regulated by the Imd pathway, Drosomycin also receives minor early input 
from the Imd pathway in addition to Toll. Today, some may prefer to use Bomanins (e.g., BomS1, BomBc3) as 
Toll reporters as they are not similarly cross-regulated by Imd. Note that these host defense peptides are good 
reporters for the systemic immune response, but may not reflect the activity of these pathways in other tissues 
such as epithelia, due to the existence of tissue specific regulators or signaling cascades (Neyen et al., 2014; 
Troha and Buchon, 2019).
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D.	 Post-transcriptional regulation of Toll and  
Imd immune responses

In recent years, we have learnt a lot about the mechanisms regulating the systemic anti-
microbial response and the NF-kB mediated transcriptional response in particular. Find-
ings increasingly show that regulatory steps take place at both the post-transcriptional 
and post-translational levels, and that these are critical to mount an efficient systemic 
immune response. 

i)	 Post-transcriptional regulation by genome-encoded RNAs
Regulatory RNAs including microRNA (miRNA), long non-coding RNA (lncRNA) and 
circular RNA (circRNA) have been shown to regulate the products of transcription in 
various ways, typically by regulating gene expression, protein processing, or protein ac-
tivity (Mattick and Makunin, 2006).

Several miRNAs7 regulate the systemic antimicrobial response by targeting tran-
scripts encoding signaling components of the Toll and Imd pathways as well as antimi-

7	 Micro RNAs (miRNA) are small, single-stranded, non-coding RNA molecules containing 21 to 23 
nucleotides that pair to complementary sequences in mRNA molecules and silence them in various ways 
including, i) cleavage of the mRNA strand into two pieces, ii) destabilization of the mRNA by shortening its 
poly(A) tail, or iii) by reducing translation of the mRNA into proteins.

This effect is more apparent when using natural infection routes, as injury activates both 
pathways to a certain extent. This led to a simplified conception of Toll and Imd pathway 
activation: Toll is activated by Gram-positive bacteria and fungi, and Imd by Gram-neg-
ative bacteria. Subsequent characterization of microbial elicitors (DAP- or Lysine-type 
peptidoglycans, β-1,3 glucans, microbial proteases) complicated this early dichotomy 
by showing that: (i) Gram-negative bacteria and DAP-type peptidoglycan also stimulate 
the Toll pathway (Leulier et al., 2003; Vaz et al., 2019); (ii) some Gram-positive bacteria 
have DAP-type peptidoglycans that can stimulate both Toll and Imd pathways; (iii) many 
Gram-negative bacteria produce proteases that can activate the Toll pathway; (iv) acces-
sibility and concentration of elicitors influence signaling (Leulier et al., 2003; Vaz et al., 
2019); and (v) infection route influences sensing. Some clear distinctions do remain: for 
example, the strongest elicitor of the Imd pathway is monomeric peptidoglycan (TCT), 
which does not activate the Toll pathway (Kleino and Silverman, 2014). Today, we know 
that immune recognition is highly complex, and that each microbe or even each strain 
can elicit a unique response. Because of this, the classical dichotomy of Gram-positive/
Toll and Gram-negative/Imd has been characterized as misleading by some authors in 
recent years. We choose to continue using this framing as it is conceptually useful as long 
as we are aware of the complexity behind it, as simplifications often are.
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crobial peptides (Abbas et al., 2023; Atilano et al., 2017; Huang et al., 2024; Li et al., 2017; 
Moure et al., 2022). Some miRNAs of the miR-959-962 cluster negatively regulate Toll 
pathway activity by binding the 3’UTR of the Tube, Dorsal, or Toll transcripts (mRNAs) 
to suppress their expression (Li et al., 2021; Vodala et al., 2012). Similarly, Drosophila 
miR-317 negatively regulates Dif-RC, one of the four Dif transcripts. Flies transiently 
overexpressing miR-317 have poor survival while miR317KO/+ heterozygous flies have 
better survival than wild-type during Gram-positive bacterial infection (Li et al., 2017, 
2019). An emerging concept is that miRNAs might be secreted through extracellular 
vesicles (EVs) in plants and animals to accomplish cross-taxa RNAi and silence viru-
lence factor genes encoded by pathogens. In Anopheles mosquitoes, both let-7 and miR-
100 miRNAs silence virulence-related genes of the entomopathogenic fungus Beauveria 
(Wang et al., 2021). This concept of host-encoded pathogen-targeting RNAi has not yet 
been extended to Drosophila.

Several lncRNAs8 have similarly been implicated in the systemic immune re-
sponse of Drosophila (Moure et al., 2022). Zhou et al. proposed that the immune induc-
ible lncRNA-CR46018 and lncRNA-CR11538 interact with the Toll pathway by targeting 
the transcription factors Dif and Dorsal, or by competing with Dif and Dorsal to bind to 
AMP promoter regions (Zhou et al., 2021a, 2021b). A similar interaction was described 
for lncRNA-CR33942 in modulating Relish binding to Imd-regulated AMP promoters, 
although in this case lncRNA binding facilitated AMP expression (Zhou et al., 2022). 
lncRNAs may also function in the immune response to viruses. One study reported that 
an lncRNA (VINR) accumulates due to the action of the Drosophila C virus viral sup-
pressor of RNA silencing (VSR). VINR interacts with Cactin and prevents its ubiquitin 
proteasome-dependent degradation, promoting AMP expression through a non-canoni-
cal pathway. Knockdown of VINR or Cactin increased host susceptibility to bacterial and 
viral infections (Zhang et al., 2020a).

Circular RNAs9 have also been implicated in Drosophila host physiology and the 
immune response. The circular RNA circATP8B(2) binds to the Duox NAD-BD domain 
in the cytosol to regulate Duox activity, impacting both ROS production and suscepti-
bility to viruses in the Drosophila gut (Liang et al., 2024). The circularization of some 
RNAs also allows translation to produce encoded peptide products. An example in Dro-
sophila is the case of the circRNA CircSfl which is encoded by the sulfateless gene, and 
rescues both the fecundity and lifespan of insulin mutant flies by producing a small Sul-
fateless sub-peptide product (Weigelt et al., 2020). In neurodevelopment, circEct4/Edis 
(Ect4-derived immune suppressor), encodes a functional peptide, Edis-p, that inhibits 
proteolytic processing of the immune transcription factor Relish, preventing overacti-
vation of the immune response (Liu et al., 2022a; Xiong et al., 2022). Some genes previ-
ously annotated as lncRNAs may ultimately be protein-coding circRNAs with different 

8	 Long non-coding RNAs (lncRNA) were initially defined as genes encoding transcripts of more than 
200 nucleotides that are not translated into proteins. However, continued studies showed that many of these 
lncRNAs are actually circular RNAs that encode small proteins or micro-peptides. Thus, lncRNAs are now 
defined as a class of RNA molecules of more than 200 nucleotides that have no or limited coding capacity.
9	 Circular RNAs (circRNAs) are the latest addition to the noncoding and regulatory RNA collection, 
characterized as covalently closed RNA loops generated by “head-to-tail” backsplicing events. Some genes 
initially annotated as lncRNAs are now understood to be circRNAs.



60	 The Drosophila Immunity Handbook

putative mechanisms of activity. The budding field of circRNA biology is therefore an 
exciting and unexplored direction of research.

These examples show that gene regulation does not end with production of the 
primary transcript. It should be said that reports of the impacts of miRNAs and lncRNAs 
in Drosophila immunity have generally used complex genetic tools that did not always 
control for host genetic background; further study is needed to understand the effect 
size and importance of these interactions. Additionally, early automated approaches to 
lncRNA annotation sometimes discounted peptides with <100 codons of open reading 
frame, and so a recent shift in bioinformatic prediction has expanded the list of puta-
tive short protein-coding genes (Guerra-Almeida et al., 2021). The Drosophila lncRNA 
CR44404 serves as a valuable example that care is needed when evaluating putative ln-
cRNAs. Initially, lncRNA CR44404 was interpreted to regulate immune-metabolic in-
teractions at the post-transcriptional level (Valanne et al., 2019a). However, CR44404 is 
now understood to encode an Imd-regulated peptide called IBIN that bears some resem-
blance to Metchnikowin (Hanson, 2022; Valanne et al., 2019b), which is also induced in 
the nervous system (Ebrahim et al., 2021).

In addition to regulation by non-coding RNAs, some antimicrobial peptides can 
be regulated at the post-transcriptional level in other ways. Some AMP genes encode 
transcripts containing AU-rich elements (AREs) in their 3’-untranslated region (UTR) 
that affect mRNA stability via Tis11-mediated mRNA degradation, a process inhibited 
by p38 MAPK (Lauwers et al., 2009; Wei et al., 2009). The early acute expression profile 
of Cecropin A1 (compared to other AMP genes) might be explained by differences in 
mRNA stability associated with these AU-rich elements. 

ii)	 Post-translational regulation of AMPs
Production of an effective antimicrobial response also requires the translation, post-trans-
lational modification (e.g., glycosylation, amidation, cleavage), and secretion of antimi-
crobial peptides, steps that have not yet been fully characterized for most AMPs. The 
product of the inducible gene Bombardier is thought to maturate or shuttle mature 
Bomanins for secretion into the hemolymph (Lin et al., 2019). When Bomanins are in-
duced but fail to be secreted into the hemolymph, flies suffer reduced survival to even 
heat-killed infections, suggesting an autotoxic cost when correct processing of immune 
peptides fails. Many AMPs are also regulated post-translationally by the nibbling off of 
dipeptidylpeptidase motifs (e.g., XA/XP) from AMP precursor proteins, and/or through 
cleavage at Furin cleavage sites (Hanson et al., 2021) (see Table 1), both of which are re-
quired for secretion of mature AMPs into the hemolymph (Hanson and Lemaitre, 2020). 
Post-translational modifications of AMPs can further impact their potency. One example 
is the glycosylation of Drosocin, whose unglycosylated protein isoform displays just a 
fraction of the antimicrobial activity compared to mono- or disaccharide O-glycosylated 
Drosocin (Bulet et al., 1996).

The many steps involved in the production of host defense peptides explain why 
the Toll and Imd pathways not only induce immune genes, but also genes that favor 
translation and secretion of immune peptides. This includes the PolyA binding protein 
Pab2, the eukaryotic initiation factor 4E-BP (Thor) that favors 5’ cap-independent trans-
lation of some antimicrobial peptide genes (Bernal and Kimbrell, 2000; De Gregorio et 
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al., 2001; Vasudevan et al., 2017), and the transcription factor CrebA which upregulates 
genes that support production of secretory vesicles. Impairing any of these processes 
affects resistance to infection by preventing full deployment of antimicrobial defenses 
(Darby et al., 2023). For instance, loss of CrebA during infection triggers endoplasmic 
reticulum (ER) stress and the unfolded protein response (UPR), which contributes to 
infection-induced mortality (Troha et al., 2018).

These studies reflect the nuanced ways in which the intermediates and effec-
tors of humoral immunity are regulated, either by impacting their initial expression, or 
post-transcriptionally affecting their translation, processing, or secretion. It is clear that 
in order to gain a comprehensive understanding of how humoral immune signaling pro-
duces the realized defense response, it will be necessary to study regulatory mechanisms 
beyond direct activity of transcription factors. 





5
Systemic immunity: Effectors

Studies of the Toll and Imd pathways have, until recently, mostly focused on the first 
phases of the immune response: recognition, signaling, and transcription. In contrast, 
how immune effectors directly shape host resistance downstream of these pathways was 
poorly characterized, owing to technical difficulties in targeting small genes through 
random mutagenesis. Fortunately, the development of the CRISPR-Cas9 gene editing 
approach has recently allowed studies that shed light on how effectors individually or 
collectively contribute to host defense.

A.	 Host defense peptides
Antimicrobial peptides (AMPs) are small, positively charged effectors that exhibit micro-
bicidal activities against bacteria or fungi (Hanson and Lemaitre, 2020; Imler and Bulet, 
2005). Being cationic, they tend to bind to membranes of microorganisms, which are 
more negatively charged (Brown and Hancock, 2006). Many AMPs disrupt membrane 
integrity by forming pores, though some target specific intracellular microbial processes, 
as exemplified by Drosocin, which inhibits translation (Koller et al., 2023; Mangano et al., 
2023) or Metchnikowin, which targets the iron-sulfur subunit of succinate–coenzyme Q 
reductase (Moghaddam et al., 2017).

Eight families of inducible AMPs are currently known in D. melanogaster: the 
antifungals Drosomycin (7 genes) (Fehlbaum et al., 1994), Baramicin A (Hanson et al., 
2021; Huang et al., 2023), and Metchnikowin (Levashina et al., 1995); Cecropins (4 genes 
(Kylsten et al., 1990)) and Defensin (Dimarcq et al., 1994), which have both antibacterial 
and some antifungal activities in vitro; and Drosocin (Bulet et al., 1996; Charlet et al., 
1996), Attacins (4 genes (Hedengren et al., 2000)) and Diptericins (2 genes (Hedengren et 
al., 2000; Wicker et al., 1990)), which primarily exhibit antibacterial activity (Hanson and 
Lemaitre, 2020; Imler and Bulet, 2005) (Table 1). In addition, the Drosophila genome en-
codes many other host defense peptides such as Daisho (2 genes), Bomanins (12 genes) 
and Buletin, for which overt antimicrobial activity in vitro has not yet been demonstrat-
ed, although functional studies have shown that they are important in vivo to survive mi-
crobial infection (Clemmons et al., 2015; Cohen et al., 2020b; Hanson et al., 2022). This 
list is far from exhaustive, and many putative effectors downstream of Toll and Imd path-
ways remain uncharacterized (Table 1). At least eight uncharacterized genes encoding 
secreted peptides have features of host defense peptides, including Edin (Vanha-aho et 
al., 2015, 2012), Listericin (Goto et al., 2010), IM18, IBIN, CG45045, CG33493, CG43920 
and GNBP-Like3 (see Table 1). Moreover, some AMP genes (BaraA, Drc, AttA, AttB, 
AttC, DptB, Def) produce several peptides that may have distinct functions through 
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Table 1 List of immune peptides.
Summary of known and predicted features of immune effector genes and the peptides that they 
produce, including gene regulation, protein maturation, peptide structural predictions, and an-
timicrobial characteristics. In some cases, genes are presented as being similar to existing gene 
families (e.g., Att/Dpt-like, Mtk-like), either for sequence similarity or evolutionary ancestry rea-
sons. Cleavage motifs annotated are dipeptidylpeptidase (DPase: XA/XP motifs) and Furin (Furin: 
RXXR, often RX[R/K]R). Major, moderate, and minor annotations reflect the strength of Imd or 
Toll pathway regulation on gene expression. Activity in vitro describes results of studies done on 
peptides of the family, but these demonstrations are often limited to a few microbes, and may not 
mean that all genes in a family or all mature peptide products of a gene have been tested. Similarly, 
activity in vivo often does not distinguish between distinct sub-peptides of a gene, and may be 
limited to only a subset of microbes. An extended table 1 on Drosophila antimicrobial host defense 
peptides is available at https://www.epfl.ch/labs/lemaitrelab/lemaitre-lab/resources/.

Gene family Genes Mature 
peptides

Cleavage Imd path-
way

Toll  
pathway

Ancestry Activity 
in vitro

Activity 
in vivo

References

Defensin Def 2 DPase, Furin major Animalia G+ G+ Dimarcq et al., 1994; Tzou et al., 2000; Touré et al., 2023a;  
Hanson, 2022

Attacin AttA, AttB, AttC, AttD 2 DPase, Furin major minor Insecta G- G- Åsling et al., 1995; Hedengren et al., 2000; Rabel et al., 2004;  
Hanson et al., 2019b

Diptericin DptA, DptB 1-2 DPase, Furin major Diptera G- G- Wicker et al., 1990; Reichhart et al., 1992; Unckless et al., 2016;  
Barajas-Azpeleta et al., 2018; Hanson et al., 2019b; Hanson et al., 2023

Attacin-like /  
Diptericin-like

CG33493, Edin 1-2 DPase (Edin), 
Furin

major (Edin) Insecta Vanha-aho et al., 2012; Hanson, 2022 

Drosocin Dro, Buletin 2 DPase, Furin major moderate Drosophila / 
Insecta

G- G- Bulet et al., 1996; Tzou et al., 2000; Hanson et al., 2019b; Hanson et 
al., 2022; Koller et al., 2023; Mangano et al., 2023

IM18 CG33706 1 DPase major Diptera Uttenweiler-Joseph et al., 1998; Hanson (thesis)

Cecropin CecA1, CecA2, CecB, 
CecC

1 DPase major Insecta G-, F G-, F Kylsten et al., 1990; Samakovlis et al., 1990; Tryselius et al., 1992; 
Ekengren and Hultmark, 1999; Carboni et al., 2022

Metchnikowin Mtk 1 DPase major moderate Diptera G+, F F Levashina et al., 1995, 1998; Hanson et al., 2019a; Hanson et al., 
2019b; Moghaddam et al., 2017

Metchnikowin-like  
(putative)

Mtkl, CG43920, IBIN, 
CG45045

1 DPase (Mtkl, 
CG43920)

major minor (Mtkl) Diptera Valanne et al., 2019b; Tattikota et al., 2020; Ebrahim et al., 2021;  
Hanson, 2022

Drosomycin Drs, Drsl1, Drsl2, Drsl3, 
Drsl4, Drsl5, Drsl6

1 DPase minor (Drs) major (Drs) Drosophilidae F (Drs) F (Drs) Fehlbaum et al., 1994; Jiggins and Kim, 2005; Chakrabarti et al., 2016; 
Hanson et al., 2019b

Daisho Dso1, Dso2 1 DPase major Drosophilidae F F Cohen et al., 2020b

Baramicin BaraA1, BaraA2 5 DPase, Furin minor major Drosophilidae F F Hanson et al., 2021; Hanson et al., 2022; Huang et al., 2023

Bomanin BomS1, BomS2, 
BomS3, BomS4, 
BomS5, BomS6, 
BomT1, BomT2, 
BomT3, BomBc1,  
BomBc2, BomBc3

1 DPase major, minor 
(BomT1, 

BomS6), oth-
er (BomS4)

Drosophilidae G+, F Uttenweiler-Joseph et al., 1998; Clemmons et al., 2015; Lindsay et al., 
2018; Hanson et al., 2019b; Lin et al., 2019; Cohen et al., 2020b;  
Xu et al., 2023b

CG4269 CG4269 1 DPase minor Arthropoda De Gregorio et al., 2002b; Hanson (thesis)

Listericin Listericin 1-2(?) DPase, Furin(?) minor Drosophilidae G+ Goto et al., 2010; Hanson (thesis)

https://www.epfl.ch/labs/lemaitrelab/lemaitre-lab/resources/
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Gene family Genes Mature 
peptides

Cleavage Imd path-
way

Toll  
pathway

Ancestry Activity 
in vitro

Activity 
in vivo

References

Defensin Def 2 DPase, Furin major Animalia G+ G+ Dimarcq et al., 1994; Tzou et al., 2000; Touré et al., 2023a;  
Hanson, 2022

Attacin AttA, AttB, AttC, AttD 2 DPase, Furin major minor Insecta G- G- Åsling et al., 1995; Hedengren et al., 2000; Rabel et al., 2004;  
Hanson et al., 2019b

Diptericin DptA, DptB 1-2 DPase, Furin major Diptera G- G- Wicker et al., 1990; Reichhart et al., 1992; Unckless et al., 2016;  
Barajas-Azpeleta et al., 2018; Hanson et al., 2019b; Hanson et al., 2023

Attacin-like /  
Diptericin-like

CG33493, Edin 1-2 DPase (Edin), 
Furin

major (Edin) Insecta Vanha-aho et al., 2012; Hanson, 2022 

Drosocin Dro, Buletin 2 DPase, Furin major moderate Drosophila / 
Insecta

G- G- Bulet et al., 1996; Tzou et al., 2000; Hanson et al., 2019b; Hanson et 
al., 2022; Koller et al., 2023; Mangano et al., 2023

IM18 CG33706 1 DPase major Diptera Uttenweiler-Joseph et al., 1998; Hanson (thesis)

Cecropin CecA1, CecA2, CecB, 
CecC

1 DPase major Insecta G-, F G-, F Kylsten et al., 1990; Samakovlis et al., 1990; Tryselius et al., 1992; 
Ekengren and Hultmark, 1999; Carboni et al., 2022

Metchnikowin Mtk 1 DPase major moderate Diptera G+, F F Levashina et al., 1995, 1998; Hanson et al., 2019a; Hanson et al., 
2019b; Moghaddam et al., 2017

Metchnikowin-like  
(putative)

Mtkl, CG43920, IBIN, 
CG45045

1 DPase (Mtkl, 
CG43920)

major minor (Mtkl) Diptera Valanne et al., 2019b; Tattikota et al., 2020; Ebrahim et al., 2021;  
Hanson, 2022

Drosomycin Drs, Drsl1, Drsl2, Drsl3, 
Drsl4, Drsl5, Drsl6

1 DPase minor (Drs) major (Drs) Drosophilidae F (Drs) F (Drs) Fehlbaum et al., 1994; Jiggins and Kim, 2005; Chakrabarti et al., 2016; 
Hanson et al., 2019b

Daisho Dso1, Dso2 1 DPase major Drosophilidae F F Cohen et al., 2020b

Baramicin BaraA1, BaraA2 5 DPase, Furin minor major Drosophilidae F F Hanson et al., 2021; Hanson et al., 2022; Huang et al., 2023

Bomanin BomS1, BomS2, 
BomS3, BomS4, 
BomS5, BomS6, 
BomT1, BomT2, 
BomT3, BomBc1,  
BomBc2, BomBc3

1 DPase major, minor 
(BomT1, 

BomS6), oth-
er (BomS4)

Drosophilidae G+, F Uttenweiler-Joseph et al., 1998; Clemmons et al., 2015; Lindsay et al., 
2018; Hanson et al., 2019b; Lin et al., 2019; Cohen et al., 2020b;  
Xu et al., 2023b

CG4269 CG4269 1 DPase minor Arthropoda De Gregorio et al., 2002b; Hanson (thesis)

Listericin Listericin 1-2(?) DPase, Furin(?) minor Drosophilidae G+ Goto et al., 2010; Hanson (thesis)
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Figure 14 The logic of the systemic immune effector peptide response
The Toll and Imd pathways regulate different subsets of effector peptides, although some target 
genes can be activated by either pathway (Hanson and Lemaitre, 2020; Imler and Bulet, 2005). 
The susceptibility of Toll and Imd pathway mutants can be explained by the effectors they control, 
notably antibacterial peptides for Imd, and antifungal peptides and Bomanins for Toll (Clemmons 
et al., 2015; Hanson et al., 2019b). Many effector peptides are induced simultaneously upon in-
fection, and in some cases their collective action contributes to microbial control. However, in 
multiple cases, single effector genes have key importance for defense against specific pathogens 
(bold block arrows). Many additional immune effector peptides are induced to a similar extent as 
those shown here, but have not yet been formally characterized (see Table 1 and Supplementary 
list 2). Adapted from (Hanson and Lemaitre, 2020).
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Furin cleavage of a single precursor (Hanson et al., 2022, 2021; Huang et al., 2023; Rabel 
et al., 2004). This leads to a total of at least 38 putative host defense peptide genes, many 
of which encode multiple peptides, that are induced upon systemic infection.

Although most Drosophila defense peptide-encoding genes are strongly induced 
in the fat body downstream of the Toll and Imd pathways in response to systemic in-
fections, many show specific and complex patterns of expression in tissues such as 
the tracheae, gut, salivary glands or reproductive tracts (Ferrandon et al., 1998; Önfelt 
Tingvall et al., 2001a; Reichhart et al., 1992; Samakovlis et al., 1990; Tzou et al., 2000)(see 
Gut and Epithelial Immunity, page 109). Use of fly lines lacking host defense peptide 
genes has revealed that Imd-regulated antibacterial peptides (Diptericins, Drosocin, 
Attacins and Cecropins) are the major contributors to elimination of Gram-negative 
bacteria (Carboni et al., 2022; Hanson et al., 2019b). Similarly, Toll regulated AMPs 
(Drosomycin and Metchnikowin), and host defense peptides (Bomanin, Daisho, Bara-
micin A) contribute to resistance to systemic infection by fungi (Clemmons et al., 2015; 
Cohen et al., 2020b; Hanson et al., 2021; Huang et al., 2023). Thus, the susceptibility of 
mutants of the Toll and Imd pathways to different sets of microbes not only reflects 
specificity at the level of recognition but can now also be tied directly to the activities 
of downstream effectors (Figure 14). Use of single and compound mutants reveals 
that many of these AMPs function additively or synergistically against specific mi-
crobes (Hanson et al., 2019b). A surprise has been that the classic Drosophila AMPs do 
not contribute noticeably to defense against Gram-positive bacteria in vivo (Carboni 
et al., 2022; Hanson et al., 2019b; Touré et al., 2023b), despite in vitro studies finding 
potential activity (Dimarcq et al., 1994; Ekengren and Hultmark, 1999). This could be 
due to impaired membrane disruption by the thick cell walls of Gram-positive bacteria 
protected by teichoic acids (Arias-Rojas et al., 2023; Attieh et al., 2020; Kamar et al., 
2017) (Box 2), or dynamics of infection in vivo that prevent bacterial exposure to host 
antimicrobial peptides (Touré et al., 2023a).

A further revelation in recent years is that AMPs have highly specific host-microbe 
interactions where a single AMP determines most of the AMP-mediated host resistance 
against particular pathogens. This specificity is best exemplified by the Diptericin gene 
family, where two members (Diptericin A and B) encode microbe-specific defenses against 
Providencia rettgeri and Acetobacter bacteria respectively (Hanson et al., 2023; Hanson 
et al., 2019b; Unckless et al., 2016). This specificity is also found for other Drosophila 
AMPs and AMP-like genes such as Drosocin/Enterobacter cloacae, Daisho/Fusarium fun-
gi, Attacin/Serratia marcescens (Cohen et al., 2020b; Hanson et al., 2022)(Brian Lazzaro, 
personal communication). Drosocin likely sequesters bacterial ribosome release factors, 
arresting ribosome function (Koller et al., 2023; Mangano et al., 2023). Its specificity could 
reflect a particular binding affinity for the E. cloacae ribosome, or alternately a propensity 
for E. cloacae to take up Drosocin through the action of uptake permeases including the 
ABC transporter SbmA (Krizsan et al., 2015). Crucially, such specificity reveals the crit-
ical role of a single peptide among multiple immune effectors to resist infection, but we 
are yet to determine the mechanistic basis of peptide-microbe specificity. Analyzing the 
basis of specificity might give clues to the “Achilles’ heel” of various pathogens (Hanson, 
2024). Novel screens that use pathogenic microbes found in the fly’s natural ecology are a 
promising arena to reveal additional effector-microbe specificities.

An exciting new concept is that some inducible host defense peptides may 
not be microbicidal, but rather protective for the host against virulence factors (e.g., 
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proteases, toxins) common to pathogens (Huang et al., 2023; Xu et al., 2023a). As dis-
cussed above, a major component of Toll-mediated defense against Gram-positive bac-
teria and fungi are the Bomanins, a family of 12 genes in three forms (short, tailed, and 
bicipital) (Clemmons et al., 2015). Proper secretion of short-form Bomanins requires 
another Toll-inducible gene, bombardier (Lin et al., 2019). The precise mechanisms of 
Bomanin-mediated defense remain unclear. Single Bomanin genes may be multifunc-
tional, or different Bomanins may operate in a pathogen-specific manner. For instance, 
hemolymph deficient for short-form Bomanins lacks killing activity against Candi-
da yeast (Lindsay et al., 2018), suggesting Bomanins have direct antifungal activity. 
However, a recent report convincingly showed that Aspergillus fumigatus filamentous 
fungus kills Bomanin-deficient flies due to reduced tolerance to its toxins. Expression 
of Bomanin Short 6 ubiquitously or in the nervous system protected flies against toxin 
injection independent of infection, supporting a role for Bomanins in tolerance of tox-
in-mediated damage (Xu et al., 2023a). A similar role in tolerance has been suggested 
for Baramicin A (Huang et al., 2023). Among all the immune-induced AMPs, Attacin 
D (AttD) uniquely lacks a signal peptide and is not secreted. A recent pre-print shows 
that Attacin D (AttD) is induced by the Imd pathway in Malpighian tubules and its 
over-expression is associated with cell death (Oi et al., 2024). Of note, another immune 
induced protein downstream of the Toll pathway (De Gregorio et al., 2002b), Ninjurin 
A, (NijA) also has a role in induction of non-apoptotic cell death (Broderick et al., 
2012). The idea that some immune effectors downstream of Toll and Imd pathways 
contribute to cell death is appealing, as elimination of infected cells is a conserved 
host defense mechanism (Pradeu et al., 2024). The physiological roles of Attacin D and 
Ninjurin A in host defense await further characterization.

B.	 Transferrin and other putative effectors
Nutritional immunity is a mechanism that combats pathogens through sequestration of 
nutrients required for pathogen growth, notably iron (Núñez et al., 2018; Pradeu et al., 
2024). In Drosophila, septic infection induces the expression of two transferrin genes, 
Tsf1 and Tsf3 (Skaar, 2010) as well as the iron binding protein Zip89B (De Gregorio et 
al., 2001). A recent study showed that Tsf1 sequesters iron from the hemolymph to the 
fat body upon infection, and flies mutant for Tsf1 are susceptible to infection by Cun-
ninghamella bertholletiae fungi and Pseudomonas aeruginosa bacteria (Iatsenko et al., 
2020). These studies demonstrate that nutritional immunity is key in surviving certain 
infections in Drosophila.

In Drosophila, six genes encode proteins that carry a domain structurally related 
to the mammalian complement factor C3 family, named the thioester-containing pro-
teins (TEPs). While Tep5 is a pseudogene and Tep6 (also called Macroglobulin comple-
ment-related, Mcr) lacks the thioester motif and is a component of epithelial septate 
junctions (Batz et al., 2014), TEPs 1-4 encode signal peptides and are expressed in im-
mune tissues, indicating a potential role in host defense (Bou Aoun et al., 2011; Dostálová 
et al., 2017). Tep2 and Tep4 appear to be regulated by the Imd and Toll pathways (De Gre-
gorio et al., 2001), and Tep1 by the JAK-STAT pathway upon systemic infection (Irving et 
al., 2005; Lagueux et al., 2000). Studies in mosquitoes have revealed a key role of Tep1 in 
defense against the malaria parasite Plasmodium falciparum. Similar to the complement 
factor C3b, Tep1 binds to the ookinete surface, and by recruiting LRM1/APL1 proteins 
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induce killing and/or melanization of the ookinete (Blandin et al., 2004; Povelones et 
al., 2016). The functions of Drosophila TEPs are less well-characterized, and the LRM1/
APL1 proteins that function with Tep1 in mosquitoes are not found in Drosophila. Nev-
ertheless, mutations of these TEPs in Drosophila revealed roles in both humoral and 
cellular immunity, as they promote both Toll pathway activation and phagocytosis of 
Gram-positive bacteria (Dostálová et al., 2017). Additionally, Tep4 acts as an opsonin 
that promotes phagocytosis of ingested P. aeruginosa (Haller et al., 2018) and some TEPs 
protect against nematode (Arefin et al., 2014; Castillo et al., 2013; Tafesh-Edwards and 
Eleftherianos, 2023a) and parasitoid wasp infections (Bou Aoun et al., 2011; Dostálová 
et al., 2017). These studies collectively suggest that TEPs bind to microbes and facilitate 
immune reactions, contributing to effector-mediated immunity.

Finally, systemic infection triggers the expression of many protease inhibitors 
from the Serpin and Kunitz families, some of which may block the entry or virulence 
effects of pathogen proteases (De Gregorio et al., 2001; Kress et al., 2004). Many secreted 
immune effectors remain to be characterized (see Supplementary List 1).

C.	 Metabolic adaptation associated with systemic  
antimicrobial responses

In addition to immunity, the fat body and hemocytes have important roles in metab-
olism and storage. Mobilizing the immune system to fight infection requires massive 
reprogramming of these tissues to fuel the production of defense peptides (Clark et al., 
2013). Consistent with this, Toll- and Imd-mediated immune responses interact with 
host metabolism (Bland, 2022; Dionne, 2014; Lee and Lee, 2018)(see also Hemocytes are 
a central metabolic hub, and Figure 27, page 105). Systemic infection also suppresses 
glycolytic and basal metabolic pathways (Clark et al., 2013; De Gregorio et al., 2001), 
and is usually accompanied by loss of glycerides and carbohydrate stores (Davoodi et 
al., 2019; DiAngelo et al., 2009; Dionne et al., 2006; Martínez et al., 2020; Roth et al., 
2018). Activation of the Toll pathway in larvae similarly results in reduced triglyceride 
storage and synthesis in the fat body and reallocation of resources to phospholipid syn-
thesis to deal with increased vesicle production required for effector secretion, a switch 
that is triggered by high levels of AMP secretion and mediated by the Kennedy pathway 
(Martínez et al., 2020). Toll activation also suppresses insulin signaling through reduced 
Akt10 phosphorylation (Roth et al., 2018) and chronic activation inhibits larval growth 
(DiAngelo et al., 2009). Both Toll and Imd pathways have been shown to impact lipid me-
tabolism (Davoodi et al., 2019; Molaei et al., 2019; Roth et al., 2018). Thus, alteration of 
host metabolism can have a profound effect on the immune response. As pathogens rely 
on specific host metabolites, dietary or metabolic changes can be detrimental or benefi-
cial to the host depending on the infecting pathogen (Bland, 2022). As the fat body also 
provisions oogenesis, notably through the production of yolk, trade-offs occur between 
reproduction and immunity (Gordon et al., 2022; Gupta et al., 2022) (see Consequences 
of mating on immunity, page 122). 

10	 The Akt kinase is a component of the insulin growth factor pathway that functions downstream of 
the product of Pi3K92E and is activated by phosphatidylinositol binding and phosphorylation. Its phosphory-
lation is used a read-out of the insulin pathway.
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Systemic immunity: Melanization

Melanization is an arthropod-specific immune mechanism resulting in the rapid depo-
sition of the black pigment melanin at wound or infection sites and concomitant pro-
duction of microbicidal reactive oxygen species (Cerenius et al., 2008; Marieshwari et al., 
2023; Tang, 2009)11. This elegant effector process produces not only microbicidal activity, 
but also hardens clots with melanin polymer plugs that prevent blood loss, akin to the 
mechanical function of mammalian fibrin scabs. Melanization is central to many im-
mune reactions such as wound healing, nodulation12, and encapsulation, and involves 
specialized crystal cell hemocytes that rupture in a caspase-dependent manner to release 
clotting and melanization factors. 

A.	 Melanization: Enzymatic pathway and  
microbicidal activity

Melanization relies on the activation of phenoloxidase (PO) enzymes, which catalyze 
critical steps resulting in melanin polymerization. Phenoloxidases are copper-contain-
ing enzymes related to invertebrate hemocyanins which transport oxygen, and insect 
laccases which sclerotize and tan the cuticle (Cerenius et al., 2008; Marieshwari et al., 
2023). There are three POs in Drosophila, all of which are involved in immune reactions 
(Asano and Takebuchi, 2009; Dudzic et al., 2015; Nam et al., 2008). PO1 and PO2 are 
produced by crystal cells as zymogens called prophenoloxidases (PPOs) that are convert-
ed into active POs when cleaved at the N-terminus by serine proteases of the Toll-PO 
SP cascade. Two CLIP domain serine protease homologs, cSPH35 and cSPH242, act as 
co-factors in activation of PPO1 by the Toll-PO cascade (Jin et al., 2023). In contrast, 
PO3 is produced in an active form by lamellocytes and is therefore likely regulated at the 
transcriptional level (Nam et al., 2008) (see Encapsulation, and Figure 26, page 100). 

Phenoloxidases are sticky enzymes that bind to self and non-self tissues, generat-
ing microbicidal reactive oxygen species (ROS) and toxic secondary compounds. In vitro 
experiments reveal that phenoloxidases have broad spectrum bactericidal activity, and 

11	 The melanization reaction described here is an arthropod specific immune reaction. It is distinct 
although related to the deposition of melanin during cuticle formation that results in body pigmentation, 
which involves other enzymes. The immune melanization reaction is thought to take place at injury sites, in 
the hemolymph, around large parasites (encapsulation), on some abnormal tissues (melanotic tumors) and in 
some epithelia such as the hindgut and trachea.
12	 Nodulation is the aggregation of invading pathogens by hemocytes and secreted materials (Miller et 
al., 1994; Satyavathi et al., 2014). While nodulation has been observed in other insects, this process has not for-
mally been characterized in Drosophila. However, related processes such as hemocyte degranulation, clotting 
and agglutination are found in Drosophila (Matskevich et al., 2010; Theopold et al., 2004).
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contribute to formation of large melanized bacterial aggregates (Zhao et al., 2007). The 
aromatic amino acid tyrosine and its derivatives are the precursors of melanin (Nappi 
et al., 2009; Tang, 2009) (Figure 15). Phenoloxidases contribute to the initial step of 
melanin synthesis by transforming tyrosine into DOPA (l-3,4-dihydroxyphenylalanine) 
by hydroxylation, and to the late stage of the pathway by converting phenols to quinones 
that polymerize to form melanin. Surprisingly, the blackening and microbicidal effects 
of the melanization cascade are not always linked (Dudzic et al., 2019). Although a mu-
tation in the serine protease Hayan leads to the almost complete loss of blackening in 
adult flies, Hayan mutants are not as susceptible as PPO1,PPO2 double mutant flies are 
to S. aureus infection. In contrast, Sp7 mutant flies do not survive S. aureus infection, 
despite almost wild-type levels of cuticle and hemolymph blackening. This suggests that 
it is not the blackening per se that is involved in the control of S. aureus, but rather other 
events downstream of PO activity such as ROS production (Dudzic et al., 2019; Ramond 
et al., 2021). 

Melanization is more than the deposition of melanin, as it involves the production 
of ROS and other toxic compounds. DHI (5,6-dihydroxyindole) conversion to melanin 
via intermediates indole-semiquinone and indole-5,6-quinone produces reactive oxygen 
species (H2O2, O2

–) and cytotoxic molecules (Zhao et al., 2007) through the Fenton re-
action (Dolezal, 2023) (Figure 15 and Box 9). During the Fenton reaction, ROS are con-
verted to highly reactive hydroxyl radicals (OH–) in the presence of proteins containing 
copper (such as PO) or iron (such as peroxidase). Hydroxyl radicals participate in lipid 
peroxidation, which can damage pathogens and parasites but also host tissues (see Pro-
tection from ROS, page 87). Note that Drosophila lacks a homolog of NADPH-quinone 
reductase (NQO) which catalyzes conversion of DHI to melanin in mammals (Vasiliou 
et al., 2006). Dopamine, which is produced by Dopadecarboxylase (Ddc), spontaneously 
forms melanin in the presence of iron ions (Zhao et al., 2007). ROS are also produced by 
host enzymes such as NADPH oxidase (Nox) or dual oxidase (Duox) (see Box 9). 

The precise role of melanin itself is not fully understood, but it may aggregate 
bacteria, form a physical barrier around parasites, or scavenge ROS to limit diffusion 
and damage to the host. Mutations affecting the melanization cascade can lead to 
more extensively disseminated infections, indicating that this cascade has a role in re-
stricting pathogen spread (Ayres and Schneider, 2008). While hemolymphatic POs are 
post-transcriptionally regulated, enzymes involved in the melanization reaction includ-
ing Dopadecarboxylase (Ddc), Pale, Punch and Dhpr are regulated at the transcriptional 
level by the Imd and JNK pathways upon infection (De Gregorio et al., 2001; Silverman 
et al., 2003). Reporters reveal that Ddc is produced in the epidermis around wound sites, 
and is regulated by the MAP kinase p38c (Davis et al., 2008) (see Figure 18). 

B.	 Regional and functional specialization  
of prophenoloxidases

Immune melanization can occur in the hemolymph, but also in clots, at wound sites, 
around parasites, and in various tissues, usually in association with cell death. Use of 
mutations affecting each of the POs alone or in combination revealed that both PPO1 
and PPO2 contribute to hemolymph melanization (Binggeli et al., 2014; Dudzic et al., 
2015; Neyen et al., 2015; Rizki et al., 1980). PPO1 provides an immediate source of phe-
noloxidase activity, while PPO2 is stored as crystalline inclusions in the specialized crystal 
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Figure 15 Metabolic pathway associated with the melanization reaction
Schematic representation of the melanization cascade. Drosophila genes involved in the melaniza-
tion pathway are indicated in italics; genes upregulated by wounding or infection are in bold (from 
(De Gregorio et al., 2001)). Phenoloxidases (PO) activated by the Toll-PO SP serine protease cascade 
catalyse several steps in melanin production. PAH, phenylalanine hydroxylase; Dhpr, dihydrop-
teridine reductase; GCH, GTP cyclohydroxylase; BH-4, tetrahydrobiopterin; TH, tyrosine hydrox-
ylase; Ddc, dopadecarboxylase; DCE, dopachrome conversion enzyme; DHI, 5,6-dihydroxyindole. 
yellow-f is a paralog of the Drosophila yellow gene involved in body pigmentation. Compiled with 
data from (De Gregorio et al., 2001; Dolezal, 2023; Nappi et al., 2009; Tang, 2009). Created with 
BioRender.com, CC-BY-NC-ND.

http://BioRender.com
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cell hemocytes and functions as premade reserves deployed at a slightly later stage (see 
Systemic immunity: Cellular response, page 91). Indeed, PPO2-deficient flies have crys-
tal cells that contain no crystals (Binggeli et al., 2014). The exact localization of PPO1, 
which may be present in the cytosol or crystal inclusions of crystal cells and/or in the 
hemolymph, is not fully established but a PPO1-GFP fusion shows that this PPO is pres-
ent in larval crystal cells (B.L. unpublished). Thus, both PPO1 and PPO2 are produced 
by crystal cells, consistent with the observation that lozenge-deficient flies that lack this 
hemocyte type fail to melanize (Rizki et al., 1980, 1985; Rizki and Rizki, 1974; Warner et 
al., 1974). Melanization of capsules generated by larval lamellocytes is mediated by PPO2 
released from crystal cells and PPO3 produced by lamellocytes (Dudzic et al., 2015). PPO3 
lacks a signal peptide and is constitutively active (Dudzic et al., 2015; Nam et al., 2008). It 
may not be secreted, but instead involved in the melanization of lamellocytes themselves 
(Dudzic et al., 2015; Nam et al., 2008) (see Encapsulation, and Figure 26, page  100). 
Thus, differences in spatial localization, immediate or late availability, and mode of acti-
vation underlie the functional diversification of the three Drosophila PPOs, each of which 
have non-redundant but overlapping functions (Dudzic et al., 2015). 

PPO1,PPO2 double mutant flies that lack hemolymphatic POs are susceptible 
to large wounds and to infection by many bacterial and fungal pathogens, revealing 
the role of melanization in the wound response and infection (Binggeli et al., 2014). 
Against certain infections such as low-dose Staphylococcus aureus, melanization can 
be the main factor determining survival, more so than transcriptional activation of 
the Toll or Imd pathways or presence of plasmatocytes (Dudzic et al., 2019; Rycke-
busch et al., 2024). This is consistent with the high susceptibility of S. aureus to ROS 
(Gonzalez et al., 2013; Ramond et al., 2021). PPO2,PPO3 deficient larvae that cannot 
produce melanized capsules are also susceptible to wasp infestation (Dudzic et al., 
2015; Rizki and Rizki, 1990). Fascinatingly, PPOs can also function externally: they are 
present in molting fluid and help prevent colonization of the freshly-molted cuticle 
by fungal spores (Zhang et al., 2017). These studies reveal key roles of melanization 
in host defense. A recent study has convincingly shown that crystal cells contribute to 
oxygen transport through PPO2 protein phase transition (Shin et al., 2024) similar to 
crustacean hemocyanins, pigments with homology to PPOs that transport oxygen in 
crustaceans (Coates and Costa-Paiva, 2020). Shin and colleagues demonstrated that 
crystal cells, attracted by H2O2, move to sessile patches to collect oxygen from the tra-
chea. This process is expected to be crucial in hypoxic conditions, particularly in oxy-
genation of the fat body, which is poorly connected to the tracheal system. In support 
of this, PPO2 deficient larvae are susceptible to hypoxia (Shin et al., 2024).

C.	 Crystal cell rupture: A pyroptosis-like cell death?
The mechanism that restricts melanization to localized areas is not well known, but likely 
relies on (i) spatial inhibition of the serine protease cascade by serpins and, (ii) localized 
delivery of PPOs by crystal cells. Sequestration of PPO1 and PPO2 in crystal cells separates 
them from substrates in the hemolymph, and their requirement for activation by serine 
proteases prevents spontaneous activation and toxicity to host tissues. Indeed, mutations 
leading to constitutive activation of the phenoloxidase pathway such as serpin mutations 
are very detrimental to flies (Charron et al., 2008; De Gregorio et al., 2002a; Scherfer et al., 
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2008). Conventionally reared13 larvae and adults have more cuticular sessile crystal cells 
and produce more PPO, respectively, than age-matched axenic individuals, indicating an 
impact of the microbiota on hematopoiesis (Benoit et al., 2017). Although its precise role 
has not been determined, the larvae and adults deficient for the odorant binding protein 
Obp28A fail to produce crystal cells and have a melanization defect (Benoit et al., 2017).

Crystal cells migrate to wounds and undergo a special form of programmed cell 
death that results in membrane swelling and cell rupture, releasing PPOs, which lack 
signal peptides, into the hemolymph (Dziedziech and Theopold, 2021) (Figure 16). This 
process requires the caspase inhibitor DIAP1, the initiator caspase Dronc and the effec-
tor caspase Dcp-1 as well as a component of the apoptosome (Dziedziech and Theopold, 
2021). It also involves JNK activation by the TNF-related factor Eiger and ROS (Bidla 
et al., 2007). As in other contexts, ROS likely activates JNK to trigger a caspase cascade 

13	 Conventionally raised or reared animals refers to animals kept in standard lab conditions with their 
indigenous microbiota, as opposed to axenic (germ free) or gnotobiotic (reconstituted microbiota) animals.

Figure 16 Crystal cells in Drosophila melanogaster
A Posterior end of a larva that has been heated to induce crystal cell rupture and melanization, 
showing crystal cells adherent underneath the cuticle (Photograph, B. Lemaitre). B Light micro-
graph of a crystal cell; asterisk indicates an adherent fat body fragment. Crystals can be seen as 
regular rod-shaped structures within the cell (from (Bidla et al., 2007)). C Crystal cell stained with 
PPO2 antibody, showing fluorescent PPO2 crystals within the cell (from (Binggeli et al., 2014)). 
D Time series of crystal cell rupture and PPO2 crystal dissolution (from (Bidla et al., 2007)). Ar-
rowhead indicates crystal cell with rod-shaped crystal inclusions; asterisk indicates a plasmato-
cyte. Crystal cells rapidly rupture and dissociate upon bleeding, making them difficult to capture 
or manipulate ex vivo.
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that induces crystal cell rupture. Drosophila crystal cell rupture has similarities to pyro-
ptosis, a programmed cell death pathway that leads to the release of cytokines through 
membrane pores (Dziedziech and Theopold, 2021). Crystal cell activation is not only 
induced upon wounding or infection, but by cell surface exposure of negatively charged 
phospholipids normally confined in the inner layer of the membrane (e.g., phosphati-
dylserine), which can occur during apoptosis or stress (Bidla et al., 2009). PO activation 
can be induced by heating (Figure 16A) and occurs spontaneously in crystal cells of 
larvae that carry the gain-of-function Black cells (PPO1) mutation (Neyen et al., 2015; 
Rizki et al., 1980).
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Systemic wound and stress responses

Drosophila has an open circulatory system and must quickly seal wounds to prevent 
hemolymph loss and pathogen entry (George and Martin, 2022; Theopold et al., 2004). 
Wound healing has been studied using assays including large and small punctures, 
pinching, internal tissue damage using genetically directed apoptosis, and laser ablation 
in embryos, larvae, pupae, and adults. Although different life stages and tissues affect re-
sults, wound healing involves both local and systemic reactions. There is extensive cross 
talk between immune and repair processes: several factors involved in wound healing 
and clotting contribute to host defense against pathogens, and several of these are regu-
lated by the Toll and Imd immune pathways (De Gregorio et al., 2002b). 

A.	 Local epithelium repair
The first signal following wounding is an influx of calcium into damaged cells at the 
wound edge (Razzell et al., 2013; Shannon et al., 2017) (Figure 17). This calcium flash 
spreads across several cell diameters and is dependent on innexins, suggesting transcel-
lular signaling through gap junctions (George and Martin, 2022). A second independent 
calcium release takes place in more distal cells through activation of the Methuselah 
10 G-coupled receptor (Mthl10) by Growth Blocking Peptides14 Gbp1 and Gbp2, that 
are themselves activated by proteases released at the injury site (O’Connor et al., 2021). 
These calcium flashes activate the NADPH oxidase Duox, generating H2O2 that stimu-
lates a transcriptomic response and promotes migration of neighboring hemocytes to the 
wound site (Juarez et al., 2011; Moreira et al., 2010)(see Box 9). 

Wound repair in the embryonic epithelium involves the contraction of an acto-
myosin “purse string” in the edge of cells closest to the wound, that acts like stitches to 
close the wound. Without cell division, cells at the edge of the wound extend dynamic 
filipodia and lamellipodia that meet to heal the gap, a process involving the small GT-
Pases Rho, Rac, and Cdc42 and integrins (Park et al., 2018; Wood et al., 2002; Wood and 
Martin, 2017). In larvae and pupae, these cells fuse to form a syncytium, which improves 
wound re-epithelization compared to diploid cells due to pooling of resources (Galko 
and Krasnow, 2004; White et al., 2023). More distant cells begin to change shape and 
intercalate to restore epithelium organization (Figure 17).

14	 Growth Blocking Peptides (Gbps) are insect-specific cytokines initially identified in Lepidoptera 
(Matsumoto et al., 2012). They are induced by various stresses through the JNK pathway and can trigger calci-
um flashes and cell spreading in vitro (Ono et al., 2024; Tsuzuki et al., 2012).
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Figure 17 The local and systemic wound responses
The wound site produces signals such as DAMPs (e.g., α-actinin) and ROS that co-ordinate in-
terrelated responses in multiple tissues during wound healing, referred to as the systemic wound 
response (SWR). Calcium flux in cells near the wound site activates Duox which produces ROS, 
which activates JNK and p38 signaling required for cellular remodeling that repairs the wound 
site. Upd3, a ligand of the JAK-STAT pathway that contributes to expression of stress proteins and 
tissue repair, is produced through processes involving ROS generated by the oxidases Nox and 
Duox in the fat body and hemocytes, respectively. Upd3 production by the hemocytes in response 
to septic injury also promotes renewal of the gut epithelium (Chakrabarti and Visweswariah, 
2020). ROS also activates Toll signaling through an unknown mechanism and increases expres-
sion of genes that resist infection (AMPs), and melanize the wound site (Ddc), promoting clot-
ting. ROS production through Duox at the wound site primes hemocytes to migrate to the wound, 
which is mediated by an uncharacterized chemoattractant signal. Hemocytes at the wound site 
contribute clotting and melanization factors in addition to phagocytosis of pathogens and debris. 
Compiled with data from (Chakrabarti and Visweswariah, 2020; Gordon et al., 2018; Shannon et 
al., 2017; Srinivasan et al., 2016; Wood and Martin, 2017). Figure created with BioRender.com, 
CC-BY-NC-ND.

Reactive oxygen species (ROS) induced upon injury play a signaling role, acti-
vating a transcriptomic program largely through the JNK and p38 pathways (Lesch et 
al., 2010; Patterson et al., 2013) (Figure 18). Reporter proteins for Puckered (Puc) and 
Misshapen (Msn) reveal that JNK is activated in a ring around the wound. This path-
way involves the successive activation of the JN4K Misshapen (Msn), the JN3K Slipper 
(Slpr), the JN2K Hemipterous (Hep), and the JNK Basket (Bsk) to induce the dimeric 
Jun/Fos (AP-1) transcription factor. The JNK pathway induces expression of genes en-

https://www.BioRender.com
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coding cytoskeletal proteins and the metalloproteases Mmp1 and Mmp2, which remodel 
the basement membrane separating epithelial cells from the hemolymph (Stevens and 
Page-McCaw, 2012). Re-epithelialization requires a strict balance between de novo pro-
duction and degradation of extracellular matrix. Blocking the JNK pathway prevents 
epithelial repair, revealing the key role of this pathway in wound healing (Rämet et al., 
2002a). Activation of JNK and p38 pathways by ROS may be mediated by a ROS sensitive 
kinase or phosphatase such as the MAP3K Ask1 (Santabárbara-Ruiz et al., 2019; Serras, 
2022). The p38 pathway negatively regulates the JNK pathway to prevent excessive ac-
tivation leading to apoptosis. In the gut, the p38 target gene MK2 down-regulates JNK 
(Seisenbacher et al., 2011).

The Toll pathway also contributes to cell adhesion and cytoskeletal rearrangements 
that lead to epidermal sealing in late-stage embryos (Capilla et al., 2017; Carvalho et al., 
2014). This pathway is activated by an unidentified protease downstream of Duox-gener-
ated H2O2. It regulates the expression of pale and Dopadecarboxylase (Ddc), enzymes in-
volved in melanization cascades. p38c also regulates Ddc, showing that multiple pathways 
integrate wound healing signals to orchestrate expression of the repair program (Davis 
et al., 2008). Another wound healing pathway involves the activation of Stitcher receptor 
tyrosine kinase, which through the downstream effectors Drk, Src42a, and ERK, induce 
formation of the actin ring, re-epithelization, and the Grainy Head transcription factor. 
Grainy Head is critical to repair protective cuticle layers of the wounded epidermis, regu-
lating expression of wound repair genes such as Ddc and pale (Wang et al., 2009). Wound 
healing is also accompanied by antioxidant responses mediated by the Nrf2 pathway and 
DNA repair by GADD45 (Stramer et al., 2008; Weavers et al., 2019).

 Hemocytes are thought to clean up the wound by phagocytosing debris, and by 
restoring extracellular matrix. Local production of antimicrobial peptides by hemocytes 
might also help prevent infection. In embryos, only mature macrophages that have taken 
up apoptotic corpses move towards wounds (Weavers et al., 2016a). Mathematical mod-
elling demonstrates that the speed of the chemotactic signal coming from the wound 
travels much slower than H2O2, indicating that an uncharacterized alternate factor at-
tracts hemocytes to the wound (Weavers et al., 2016b). However, H2O2 remotely primes 
hemocyte migration, which is transduced through a Src42a-Draper-Shark-mediated 
signaling axis (Evans et al., 2015) (Figure 17). Surprisingly, fat body cells can exhibit 
‘hemocyte behavior’ upon injury in pupae, migrating to plug the wound and phagocy-
tose wound debris (Franz et al., 2018). In larvae, circulating plasmatocytes encounter-
ing the wound attach to it without the need for chemoattractants (Babcock et al., 2008; 
Pastor-Pareja et al., 2008). In larvae but not embryos, injury produces a scab composed 
of debris crosslinked by melanization to protect the underlying epithelium as it heals 
(Galko and Krasnow, 2004). 

B.	 Clotting
Coagulation or clotting is the formation of an insoluble matrix that stops bleeding, pro-
motes wound healing, and protects against infection (Dushay, 2009; Theopold et al., 
2014) (Figure 19). Clotting has primarily been studied in larvae using ex vivo and pro-
teomic approaches (Scherfer et al., 2006; Karlsson et al., 2004). The larval clot involves 
both plasma factors produced by the fat body (Fondue, lipoproteins Lipophorin I and II, 
hexamerins and possibly Gelsolin) and by hemocytes (Transglutaminase, Hemolectin, 
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Figure 18 The Drosophila MAPK pathways
Schematic of Drosophila JNK and p38 MAPK (Mitogen-Activated Protein Kinase) pathways. 
MAP3Ks initiate JNK or p38 signaling in developmental processes or in response to a variety of 
stresses such as UV damage, high osmolarity, heat shock, ER stress, or loss of cell apico-basal po-
larity. The MAP3K Ask1 appears to be directly activated by ROS (Santabárbara-Ruiz et al., 2019). 
Additional MAP3Ks with minor or poorly studied roles (Wallenda, TAK1-like 1, TAK1-like 2) are 
not shown. Specificity in this pathway is strongly reliant on temporal and spatial expression of 
kinases, such that functions and interactions of kinases may differ greatly depending on tissue 
and developmental stage. Recent evidence shows that the Grindelwald receptor (TNF-R homo-
log) mediates apoptotic functions of the JNK pathway, whereas the Wengen homolog functions 
predominantly in the central nervous system (CNS) (Colombani and Andersen, 2023). The Dro-
sophila Wengen cytoplasmic domain is unique with no sequence homology to any mammalian 
TNFR family members, and lacks both the expected TRAF-binding domain and death domain 
(Colombani and Andersen, 2023). JNK activity is spatially restricted by low diffusibility of the TNF 
homolog Eiger. JNK controls expression of many genes required for cytoskeletal components, and 
is strongly activated in cells undergoing migration, wound healing, or shape change (Boutros et 
al., 2002; Galko and Krasnow, 2004; Rämet et al., 2002a). Imd and JNK activity are interrelated:  
(i) they share the TAK1/TAB2 complex, allowing JNK to be activated by peptidoglycan upstream 
of Imd (Hua et al., 2022); (ii) they share the ubiquitin ligase POSH, which also has essential scaf-
folding roles (Tsuda et al., 2005; Zhang et al., 2010); (iii) Relish activity upregulates DIAP1 to 
suppress JNK, and can negatively affect developmental processes (Tavignot et al., 2017) (iv) JNK 
activity suppresses DIAP2 activity through Drice to attenuate Imd pathway activity (Kietz et al., 
2022); and (v) overactivation of JNK resulting in tissue damage activates Imd signaling. AP-1 bind-
ing may also displace Relish to downregulate expression of certain genes including AMPs (Kim et 
al., 2007). Many of the results tying JNK directly to immunity in Drosophila are marred by the fact 
that widely used mutants of eiger bore a secondary mutation of the phagocytic receptor NimC1 
(Kodra et al., 2020). p38 MAPKs (p38a, p38b, p38c) have somewhat overlapping functions in de-
velopment, but appear to have more specific roles in stress responses. p38 signaling may positively 
regulate the stability of some AMP mRNAs through AU-rich elements (AREs) (Wei et al., 2009). 
p38 signaling is also involved in autophagosomal degradation of ubiquitinated protein aggregates, 
which may include intermediates in immune signaling (Belozerov et al., 2014; Ryan et al., 2021). 
Pathway compiled with data from: (Andersen et al., 2015; Chakrabarti et al., 2014; Chen et al., 
2010; Geuking et al., 2009; Karkali and Panayotou, 2012; Krautz et al., 2020; Kuranaga et al., 2002; 
La Marca and Richardson, 2020; Mathew et al., 2011; Nishida et al., 2021; Patel et al., 2019; Prim-
rose et al., 2007; Seisenbacher et al., 2011; Sekine et al., 2011; Tafesh-Edwards and Eleftherianos, 
2020; Zhuang et al., 2006). Figure created with BioRender.com, CC-BY-NC-ND.

https://www.BioRender.com
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Figure 19 Clotting in Drosophila
A Soon after wounding, a soft clot forms. Clot fibers incorporate both hemolymph- and hemo-
cyte-derived factors. Transglutaminase released from the hemocytes through exosomes cross-links 
the soft clot, stabilizing it and immobilizing pathogens (Dziedziech et al., 2020; Schmid et al., 2019; 
Theopold et al., 2014). B Phenoloxidases released from crystal cells harden the clot and deter 
pathogen growth. Phagocytosis removes debris from the wound site and reduces pathogen dissem-
ination. C Micrograph of a Drosophila clot with fibers (arrowheads) and incorporated plasmato-
cytes (asterisk). Photo courtesy of Ulrich Theopold, Stockholm University. Figure created with 
BioRender.com, CC-BY-NC-ND.

Eig71Ee and prophenoloxidases) (Scherfer et al., 2004, 2006, 2008; Karlsson et al., 2004; 
Korayem et al., 2004). An unknown signal induces degranulation of plasmatocytes, re-
leasing Hemolectin (a protein that includes a von Willebrand factor domain) and Ei-
g71Ee, which interact with plasma factors Lipophorin and Fondue, a clot structural pro-
tein with multiple repeats rich in glycine, alanine, and glutamine. These proteins are 
then crosslinked by Transglutaminase at lysine and glutamine residues, forming a soft 
clot composed of fibers and trapped hemocytes (Lindgren et al., 2008) (Figure 19A). 
Transglutaminase is the only Drosophila clotting factor that is conserved in vertebrates, 

http://BioRender.com


	 7  Systemic wound and stress responses	 83

sharing homology with Factor XIIIa (Wang et al., 2010). This protein does not have a 
signal peptide and is thought to be secreted by exosomes (Dziedziech et al., 2019). The 
chitin binding protein IDGF3 is also required for efficient clotting and wound healing. 
Its mode of action is not yet known, but it may localize the clotting reaction by promot-
ing interactions between the clot and cuticle, or function as a damage sensor to activate 
downstream programs (Kucerova et al., 2016). The primary soft clot is then hardened by 
melanization through PPO1 and PPO2 to generate a stronger mature clot (Bidla et al., 
2005) (Figure 19B). 

Larvae have hydrostatic support and must rapidly prevent hemolymph loss, mak-
ing clotting especially important at this life stage. Hemolymph from fondue or hemolectin 
loss-of-function mutants fails to aggregate beads and forms long, atypical strands (Bajzek 
et al., 2012; Chang et al., 2012). The clotting reaction is thought to be reduced or absent 
in adults, as the hard cuticle provides a rigid scaffold that restricts hemolymph leakage. 
Clotting-defective adult flies display only mild susceptibility to injury and subtle immune 
defects (e.g., Binggeli et al., 2014; Lindgren et al., 2008; Nam et al., 2012), which may 
suggest that clotting and melanization are somewhat redundant in terms of sealing the 
wound. Beyond preventing hemolymph loss, clots entrap bacteria and promote killing in 
a process reminiscent of nodulation, an immune process where pathogens are trapped by 
hemocytes and cross-linking factors (Miller et al., 1994; Satyavathi et al., 2014). Processes 
similar to nodulation have been reported in Drosophila species but are not well character-
ized. Hemocytes of Drosophila suzukii have been shown to form extracellular traps (Carrau 
et al., 2021). In Drosophila melanogaster, the glucan sensor GNBP3 has been reported to 
agglutinate yeast cells in the hemolymph to produce melanized aggregates, but it is un-
clear if this is connected to clotting (Matskevich et al., 2010). 

Clotting factors are also involved in resistance to entomopathogenic nematodes, 
which cause wounds with specialized mouthparts and enter the host either via the cuticle 
or the gut (Arefin et al., 2014; Hyrsl et al., 2011; Kucerova et al., 2016; Wang et al., 2010). 

C.	 The systemic wound response
The wound site functions as a coordinator that generates signals affecting remote or-
gans, referred to as the Systemic Wound Response (SWR) (Lee and Miura, 2014) (Fig-
ure 17). Integument injury and melanization in adults produces hemolymphatic ROS, 
leading to JNK activation in neurons that promotes a whole-body cytoprotective pro-
gram that appears critical in surviving injury (Nam et al., 2012). However, the JAK-
STAT pathway is the primary coordinator of the systemic wound response (Figure 20). 
Integument or internal damage triggers expression and secretion of the cytokines Upd2 
and Upd3 (and maybe Upd1) by hemocytes, which bind to the Domeless receptor in 
remote organs such as the gut, muscles and fat body to activate the JAK-STAT pathway 
(Agaisse et al., 2003; Chakrabarti and Visweswariah, 2020; Pastor-Pareja et al., 2008). 
This Upd response to wounding remotely controls intestinal stem cell proliferation in 
the midgut (Chakrabarti et al., 2016; Takeishi et al., 2013), expression of stress proteins 
such as Turandots by the fat body (Agaisse et al., 2003; Brun et al., 2006; Rommelaere 
et al., 2024) (see Figure 21), and metabolic regulation in muscles (Kierdorf et al., 2020; 
Woodcock et al., 2015) (see Figure 27). Interestingly, activation of the JAK-STAT path-
way in muscles by Upds produced in hemocytes stimulates lamellocyte differentiation, 
revealing an unexpected immune role of muscle tissue (Yang and Hultmark, 2016). 
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Several pathways have been shown to regulate Upd ligands in response to wound-
ing. In wounded imaginal discs, Upds are induced by JNK and p38 downstream of 
Duox-produced ROS (Santabárbara-Ruiz et al., 2015). In the gut, Upd3 transcription 
is regulated by multiple pathways, including Hippo, p38, TGF-β/Dpp, and Src (Houtz 
et al., 2017). In response to integument wounds of adults, Duox-produced ROS enters 
hemocytes through the aquaporin channel Prip to trigger Upd3 expression via a Src42A/
Draper/Shark pathway (Chakrabarti and Visweswariah, 2020). Finally, injection of ac-
tinin in Drosophila triggers Upd3 expression by the fat body via Shark and Src42A, a 
process that is dependent on activity of the NADPH oxidase Nox (Srinivasan et al., 2016)  

Figure 20 The JAK-STAT signaling pathway
Schematic of the Drosophila JAK-STAT signaling pathway. JAK-STAT signaling participates in 
wound healing, epithelial renewal, resilience and hematopoiesis. Upd cytokines (Upd1, Upd2, 
Upd3) bind to the Domeless (Dome) receptor, initiating phosphorylation of the STAT92E tran-
scription factor by the Hopscotch (Hop) kinase. Feedback inhibitors fine-tune pathway activity: 
Socs36E destabilizes Domeless and inhibits Hop kinase activity, while the phosphatase Ptp61F 
antagonizes Hop and STAT92E phosphorylation. In the nucleus, JAK-STAT activity is further con-
trolled by sumoylation through the Sumo E3 ligase Su(var)2-10 (PIAS) and the DNA-binding pro-
tein Ken, which with the NURF complex selectively inhibits expression of some JAK-STAT targets 
by disrupting STAT92E binding (Kwon et al., 2008). Upon wasp parasitization, upregulation of the 
inhibitory receptor homolog eye transformer (Latran) and downregulation of the active receptor 
domeless decreases JAK-STAT activity and promotes differentiation of lamellocytes (Makki et al., 
2010). Pathway inspired by Amoyel et al., 2014; Bina and Zeidler, 2009; Myllymäki and Rämet, 
2014; Stec et al., 2013; Valanne et al., 2010. Figure created with BioRender.com, CC-BY-NC-ND.

https://www.BioRender.com
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(Figure 17). Actinin is an intracellular cytoskeletal protein that is released upon injury 
or cell death and may acts as a Damage Associated Molecular Pattern (DAMP) (Gor-
don et al., 2018). Wounds, including sterile pinch wounds which damage the epithelium 
without affecting the overlying cuticle, activate low-level expression of antimicrobial 
peptide genes through the Toll and Imd pathways in the fat body (Kenmoku et al., 2017; 
Nainu et al., 2019). This is an example of sterile inflammation, as expression of antimi-
crobial peptides still occurs upon pinching in germ-free larvae (Nainu et al., 2019; Shau-
kat et al., 2015). Blocking apoptosis in wing epidermal cells also induces Toll activation 
via Hayan/Psh in the absence of infection (Ming et al., 2014; Nakano et al., 2023; Obata 
et al., 2014). Overexpression of Duox in hemocytes is also sufficient to activate the Toll 
pathway in the absence of wounding (Chakrabarti and Visweswariah, 2020). Thus, ster-
ile wounding can activate Toll and Imd pathways to a certain extent, through activity of 
ROS and possibly proteases. That the JAK-STAT pathway is involved in many processes 
including stress, resilience and the wound response might explain the multiple mech-
anisms that lead to the expression of its Upd ligands. Further studies are required to 
clarify how these multiple pathways intersect in various contexts.
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Systemic infection:  

Tolerance mechanisms

Systemic responses to wounds or infection are accompanied by increased activity of pro-
teases, cationic peptides, and ROS that can be deleterious to the host. Consequently, 
several disease tolerance mechanisms have evolved to attenuate negative impacts of im-
mune or wound effectors. In contrast to wound healing and immunity genes, tolerance 
genes are induced with late and sustained kinetics, with complex regulation by the Toll, 
Imd, JNK, JAK-STAT, and p38 pathways (Agaisse et al., 2003; Brun et al., 2006). 

A.	 Protection from ROS
Reactive oxygen species (ROS) production is generic to many stress and immune reac-
tions and must be rapidly detoxified by enzymes such as catalases (see Box 9). Immune 
regulated catalase (IRC) encodes a secreted catalase that is strongly induced upon in-
fection, and likely acts to control ROS in the hemolymph (Nam et al., 2012; Prakash et 
al., 2021; Westlake et al., 2024). The rosy gene encodes Drosophila Xanthine Dehydroge-
nase/Oxidase (XDH/XOD) which catalyzes the oxidation of xanthine to uric acid, a ROS 
scavenger. Rosy has a protective role with respect to both ROS and nitric oxide (NO); 
rosy deficient flies have increased susceptibility to bacterial infection (Kim et al., 2001).

Infection and stress also deplete hemolymphatic lipids, which are excreted through 
the Malpighian tubules. Lipid re-localization is mediated by Materazzi, a stress-induced 
lipid binding protein. Materazzi deficient flies are more susceptible to many stresses, in-
dicating that reduction of hemolymphatic lipids is essential for survival (Li et al., 2020a). 
This process likely protects hemolymph from damaging effects of ROS by preventing 
lipid peroxidation15, and subsequent tissue damage. In addition to xanthine dehydroge-
nase, ROS may be detoxified by glutathione peroxidase (GST) which is upregulated by 
wounding and infection, and catalases such as immune regulated catalase (IRC), Jafrac1 
and superoxide dismutase (SOD). Hemocytes are also thought to serve a central role 
in resistance to oxidative stress through JNK-mediated induction of Upd3 in response 
to oxidative DNA damage (Hersperger et al., 2023), which presumably promotes toler-
ance through JAK-STAT signaling. The KEAP1-NRF2 pathway is the principal pathway 
that protects the host against oxidative stress. Under homeostatic conditions (Gerasimos 
and Bohmann, 2008), KEAP1 forms part of an E3 ubiquitin ligase, which tightly reg-

15	 Lipid peroxidation involves the production of reactive aldehydes, such as malondialdehyde (MDA) 
and 4-hydroxynonenal (4-HNE). These aldehydes can in turn generate more ROS, leading to chain reactions 
that form protein and DNA-adducts that disrupt function and cause cell death. 
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ulates the activity of the transcription factor NRF2 by targeting it for proteasome-de-
pendent degradation. Detection of ROS by sensor cysteines of KEAP1 allows NRF2 to 
escape ubiquitination and translocate to the nucleus, where it promotes an antioxidant 
transcription program. The gene encoding KEAP1 is induced upon systemic infection, 
pointing to an important role of this pathway in ROS detoxification during the immune 
response (De Gregorio et al., 2002b).

B.	 Filtration and cleaning the hemolymph
Malpighian tubules play an important role in osmoregulation and waste removal, analo-
gous to the mammalian kidney (Chapman et al., 2013; Cohen et al., 2020a). Malpighian 
tubule activity is under endocrine control by neuropeptides such as Dh44 (Cabrero et al., 
2002; Cannell et al., 2016). Interestingly, microarray data have shown that expression of 
Dh44 is induced upon immune challenge (De Gregorio et al., 2002b), and likely increas-
es tubule filtering activity. The role of Malpighian tubules in immunity is more fully 
discussed below (see Gut and Epithelial Immunity, page 109).

Scavenging of serpin/proteinase complexes and other secreted proteins from 
the hemolymph may also be a critical step in the regulation of proteolytic cascades and 
maintenance of homeostasis (Soukup et al., 2009). This is accomplished by two groups of 
nephrocytes, the garland cells surrounding the esophagus and pericardial cells flanking 
the heart. Nephrocytes can also sequester microbiota-derived peptidoglycan from the 
hemolymph and degrade it inside lysosomes, preventing Toll pathway activation (Troha 
et al., 2019).

C.	 Protection of host tissues from antimicrobial peptides
While antimicrobial peptides (AMPs) are protective against pathogens, these cationic 
peptides can be cytotoxic to host cells in certain contexts. Tracheal cell membranes of 
Drosophila expose high levels of the negatively charged phospholipid phosphatidylser-
ine, sensitizing them to the action of AMPs which are attracted to negatively charged 
bacterial membranes (Rommelaere et al., 2024). A family of eight stress-induced pro-
teins, the Turandots, protect Drosophila host tissues from AMPs, increasing tolerance 
to stress (Ekengren and Hultmark, 2001, Ekengren and Hultmark, 1999; Rommelaere 
et al., 2024). Turandots are induced by both immune and stress pathways in the fat 
body (Agaisse et al., 2003; Brun et al., 2006; Ekengren et al., 2001) and bind to tracheal 
cells to protect them against AMPs. In vitro, Turandot A binds to phosphatidylserine 
on membranes and inhibits the pore-forming activity of Drosophila and human AMPs 
on eukaryotic cells without affecting microbicidal activity (Rommelaere et al., 2024)  
(Figure 21). 

Strikingly, basal Turandot expression by epithelia and the fat body protects the 
respiratory epithelium during pupariation. During metamorphosis, larval tracheae un-
dergo histolysis and adult tracheae arise from pupal progenitors. Both Turandots and 
antimicrobial peptides are highly expressed during this stage (Ekengren et al., 2001; Ek-
engren and Hultmark, 2001; Kappler et al., 1993; Reichhart et al., 1992; Samakovlis et 
al., 1990; Tryselius et al., 1992), where antimicrobial peptides are thought to play a pro-
phylactic role to prevent infection by bacteria escaping the gut during metamorphosis 
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(Nunes et al., 2021). High Turandot expression during metamorphosis likely protects 
tracheae from high antimicrobial peptide expression at this stage. The immune response 
during the four-day process of pupariation has so far received little attention, perhaps 
due to methodological difficulties in studying this stage.

Figure 21 Impact of antimicrobial peptide and Turandot activity on bacteria and host cells
AMPs are small cationic and amphipathic peptides that interfere with the negatively charged 
membranes of microbes (far right). Because of their amphipathic nature and positive charge, 
AMPs can bind to the membrane and form pores or otherwise disrupt membrane integrity. Eu-
karyotic cells are usually insensitive to AMPs as their membranes contain cholesterol and are less 
negatively charged than microbes (far left). Recent studies have shown that some eukaryotic cells 
including certain cancer cells and Drosophila tracheal cells expose phosphatidylserine (PS) at the 
surface, making them more negatively charged (middle right). Turandots can bind to the surface 
of PS-enriched host tissues to mask PS and selectively protect these membranes from the action of 
cationic AMPs, without disrupting AMP activity against prokaryotic cells (middle left) (Hanson 
and Lemaitre, 2020; Rommelaere et al., 2024). 
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Systemic immunity:  
Cellular response

Drosophila possess specialized hemocyte types that participate in a wide range of pro-
cesses including development, immunity, metabolism and wound healing (Honti et al., 
2014; Hultmark and Andó, 2022) (Figure 22). These incredibly plastic and motile cells 
perform diverse functions including deposition and remodeling of the extracellular ma-
trix, metabolic regulation, management of oxidative stress, inter-organ signal transduc-
tion, and production of immune effectors. The many functions of hemocytes are depen-
dent on their motility and ability to recognize and respond to a variety of signals via cell 
surface receptors. These processes are fundamentally dependent on vesicle trafficking, 
which dynamically delivers receptors required for recognition and adhesion to the cell 
surface and allows remodeling of the cytoskeleton and plasma membrane. Cytoskeletal 
remodeling is required for the formation of filopodia and lamellipodia involved in hemo-
cyte functions such as motility or phagocytosis. 

A.	 Hematopoiesis
Embryonic hematopoiesis produces several hundred blood cells that proliferate through-
out the larval stage to become the ~5000 circulating and resident (sessile) hemocytes 
present in the third instar (see (Banerjee et al., 2019; Evans et al., 2021)) for extensive 
review). In the larva, hemocytes are found in three compartments: (i) the lymph gland, 
a central hematopoietic organ that functions as a reservoir that releases hemocytes after 
parasitic infection or at metamorphosis, (ii) circulating in the hemolymph and (iii), in 
sessile16 patches between the cuticle and muscle layers (Crozatier and Meister, 2007; 
Evans et al., 2003; Honti et al., 2010; Jung, 2005; Lanot et al., 2000; Makhijani et al., 2011; 
Makhijani and Brückner, 2012). Depletion of embryonic hemocytes in larvae triggers 
overgrowth and premature differentiation of lymph gland as a consequence of decreased 
extracellular matrix production (Monticelli et al., 2024). This indicates a connection be-
tween the early (embryonic) and late phases (lymph gland) of hematopoiesis. Hemo-
cytes in the adult fly constitute a mix of embryonic and lymph-gland derived hemo-
cytes, and are largely found in populations adherent to the respiratory epithelia, ostia 
and heart (Ghosh et al., 2015; Sanchez Bosch et al., 2019). Evidence suggests that no 
significant hematopoiesis occurs in the adult fly (Boulet et al., 2021; Sanchez Bosch et 
al., 2019). Indeed, the total number of hemocytes declines throughout adult life, even in 

16	 Sessile or adherent hemocytes are those attached to tissues rather than free-floating in the hemo-
lymph.
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the first week, and decreases more rapidly upon infection suggesting that hemocytes are 
consumed during defense and not replaced (Mackenzie et al., 2011). However, bacterial 
challenge does upregulate genes commonly used as markers for hemocytes (hml, crq), 
which can cause the false impression of hemocyte proliferation. 

Drosophila larvae and adults have two major hemocyte types: plasmatocytes, 
which are macrophage-like, and crystal cells, rounded hemocytes which contain crys-
tallized prophenoloxidases (PPO) (Lanot et al., 2000) (see Systemic immunity: Melaniza-
tion, page  71). In larvae, a third hemocyte type, the lamellocytes, can differentiate 
from progenitor cells in the lymph gland or from peripherical plasmatocytes in response 
to wasp infestation or non-self recognition (see Autoimmunity, page 127) (Anderl et al., 
2016). Drosophila plasmatocytes are plastic and can transdifferentiate into crystal cells 
or lamellocytes (Anderl et al., 2016; Leitão and Sucena, 2015; Márkus et al., 2009). Single 

Figure 22 Diverse roles of plasmatocytes
Plasmatocytes can transdifferentiate into crystal cells or lamellocytes, with roles in melaniza-
tion and oxygen transport or encapsulation, respectively. Plasmatocytes are essential producers 
of many secreted proteins including components of the extracellular matrix (Fessler et al., 1994;  
Nelson et al., 1994; Tepass et al., 1994), antimicrobial peptides, ligands of the JAK-STAT and Toll 
pathways, and clotting factors. Phagocytosis contributes to both pathogen defense and wound 
healing, while cytokine production by hemocytes contributes to tumor elimination, metabolic reg-
ulation, and gut epithelial renewal. Figure created with BioRender.com, CC-BY-NC-ND.

https://www.BioRender.com
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cell analysis has revealed additional distinct hemocyte populations including AMP-pro-
ducing plasmatocytes and immature lamellocytes, as well as many less well-defined 
hemocyte cell states representing either intermediate differentiation stages or various 
transient functional programs engaged by plasmatocytes (Brooks et al., 2024; Cattenoz 
et al., 2020; Cho et al., 2020; Coates et al., 2021; Hersperger et al., 2023; Hultmark and 
Andó, 2022; Tattikota et al., 2020). These studies also reveal a cell type, the primocytes, 
that are found in circulation and the posterior signaling center17 (PSC) and may control 
lamellocyte differenciation (Hultmark and Andó, 2022). 

Sessile hemocytes are attached in a segmental pattern to the larval body wall, 
closely associated with secretory cells called oenocytes and endings of peripheral neu-
rons, which secrete activin-β to regulate hemocyte adhesion (Makhijani et al., 2011; 
Márkus et al., 2009) (Figure 23). Adhesion depends on the interaction between the 
membrane receptor Eater on the hemocytes and the specialized collagen Multiplexin in 
the extracellular matrix (Bretscher et al., 2015; Csordás et al., 2020). As a consequence, 
eater-deficient larvae have no sessile hemocytes. Loss of these neuronal microenviron-
ments through mutation of Dscam1 results in reduced hemocyte numbers (Ouyang et 
al., 2020). Recruitment to these patches contributes to plasmatocyte proliferation and 
transdifferentiation to terminal hemocyte types (Leitão and Sucena, 2015). Hemocytes 
leave the sessile patches and enter circulation upon wasp infestation, infection, or me-
chanical stimulation of the cuticle (Márkus et al., 2009; Makhijani et al., 2011). The func-
tion of the sessile hemocyte patches is not yet established, but it has been proposed that 
they constitute i) a diffuse hematopoietic organ (Márkus et al., 2009; Makhijani et al., 
2011), ii) storage for easily-deployed hemocytes (Bretscher et al., 2015), iii) localized en-
vironments allowing neural control of hematopoiesis (Makhijani et al., 2017) or, iv) sites 
where hemocytes contribute to increase oxygenation (Shin et al., 2024).

Hemocyte division and differentiation can occur in all hemocyte compartments, 
and are influenced by internal (insulin, ecdysone) and external cues (olfactory cues, in-
jury, wasp infestation) (Madhwal et al., 2020; Shim et al., 2013, 2012; Tian et al., 2023). 
The balance between differentiation and proliferation of hemocytes is essentially con-
trolled by varying levels of JAK-STAT activity (e.g., (Krzemień et al., 2007)), which can 
be influenced by input from multiple pathways including Toll (Louradour et al., 2017) 
and Relish (Ramesh et al., 2021). Maintenance and migration of hemocytes relies on the 
PVR receptor and its ligands PVF2 and PVF3 (Bond and Foley, 2012, 2009; Bruckner et 
al., 2004; Munier et al., 2002) as well as the FGF receptor Heartless and its ligand Pyra-
mus (Banerjee et al., 2019; Dragojlovic-Munther and Martinez-Agosto, 2013; Ramond et 
al., 2020a). In larvae, bacterial infection and activation of the Toll or Imd pathways trig-
gers the release of sessile hemocytes into circulation and early dissociation of the lymph 
gland, increasing the number of hemocytes available for defense. Care should be taken 
using mutations that trigger hemocyte differentiation, reduce cell adhesion, or cause 
premature lymph gland rupture, as these processes can lead to changes in the number 
of circulating hemocytes, but this is often due to loss of sessile hemocytes and not due to 
genuine change in total hemocyte number.

17	 The Posterior Signaling Center (PSC) is a group of cells in the primary lobe of the lymph gland that 
play a key role in regulating hematopoietic progenitor differentiation. The PSC contributes to the cellular im-
mune response to wasp parasitism, which is triggered by elevated ROS levels and regulated by JAK-STAT and 
Toll activity (Banerjee et al., 2019; Benmimoun et al., 2015; Evans et al., 2021; Krzemień et al., 2007).
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B.	 Phagocytosis
Phagocytosis is a stepwise process consisting of (i) particle binding by the phagocyte, 
(ii) internalization of the particle into a phagosome, (iii) phagosome maturation, and 
(iv) destruction of the particle following lysosomal fusion, which subjects the particle 
to enzymatic activity, acidity and ROS (reviewed in (Melcarne et al., 2019a; Ulvila et 

Figure 23 Larval hematopoiesis and hemocyte sessility
A Larva expressing GFP in the hemocytes (Hml>UAS-GFP), showing a segmental banding pat-
tern of sessile hemocytes (arrows) and lymph gland (arrowhead). Scattered hemocytes can also 
be seen circulating in the third hemocyte compartment, the hemolymph (Evans et al., 2003; Hon-
ti et al., 2010; Lanot et al., 2000; Makhijani et al., 2011). Adapted from (Bretscher et al., 2015). 
B Schematic of attachment of sessile hemocytes to the body wall. Secretory oenocytes and periph-
eral neurons are shown in blue, hemocytes in purple, and crystal cells in green. Sessile hemocytes 
are attached to the internal surface of the larval body wall, forming patches, some of which are 
closely associated with secretory oenocytes and peripheral nerve endings (Makhijani et al., 2011). 
Hemocytes continuously exchange between sessile patches and the circulation (Babcock et al., 
2008; Bretscher et al., 2015; Makhijani et al., 2011; Márkus et al., 2009; Welman et al., 2010). 
Figure created with BioRender.com, CC-BY-NC-ND.

http://BioRender.com
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al., 2011)). Disruption of any one of these steps typically reduces phagocytic capacity 
and influences development and immunity. The particle destruction step resulting in 
pathogen killing is poorly characterized in Drosophila, but is thought to involve lysosom-
al enzymes (DNase II, Stress Induced DNase (SID), Cathepsin) and production of ROS 
(Brennan et al., 2007; Myers et al., 2018; Seong et al., 2014, 2006).

An ecdysone pulse at the end of the larval stage increases expression of hemocyte 
cell surface receptors including the Imd receptor PGRP-LC, further shaping the adult 
immune response (Rus et al., 2013). Hemocytes clear bacteria opportunistically crossing 
the gut barrier into the hemolymph in homeostatic conditions, preventing infection and 
widespread immune activation (Braun et al., 1998). Following ingestion, pathogenic Ser-
ratia marcescens Db11 accumulate in the hemolymph of phagocytosis-impaired adults 
(Nehme et al., 2007) (see Box 9, Systemic immune activation in response to oral infec-
tion, page 114). Phagocytosis contributes with other immune processes to combatting 
infections (Charroux and Royet, 2009; Defaye et al., 2009; Shia et al., 2009, Shinzawa et 
al., 2009), but only rarely is it the major deciding factor in survival (Elrod-Erickson et al., 
2000; Nehme et al., 2011; Ryckebusch et al., 2024). Circadian rhythm also contributes to 
phagocytic activity: mutation of circadian rhythm genes prevents a burst of phagocytic 
activity that occurs at night (Stone et al., 2012) and increases sensitivity to certain patho-
gens (Lee and Edery, 2008; Shirasu-Hiza et al., 2007; Stone et al., 2012).

i)	 Cell-surface receptors
Phagocytic receptors bind molecules that identify apoptotic cells, pathogens, and other 
particles as targets for destruction (Figure 24). Phagocytic receptors further engage 
downstream signaling to trigger particle uptake. Phagocytic uptake is complex and in-
volves multiple receptors with both specific and overlapping functions. Many phago-
cytic receptors of Drosophila belong to the Nimrod family, a group of 12 proteins that 
contain specialized adhesive EGF repeats (NIM repeats). The Nimrod receptors Eater 
and NimC1 play a key role in phagocytosis of multiple targets. The N-terminal EGF 
repeats of Eater bind to Staphylococcus aureus or Enterococcus faecalis, consistent with 
its essential role in phagocytosis of Gram-positive bacteria (Chung and Kocks, 2011; 
Kocks et al., 2005; Melcarne et al., 2019b). NimC1 is essential for uptake of latex beads 
and zymosan (fungus-like) particles. Intriguingly, phagocytosis of Gram-negative bac-
teria and apoptotic cells is not blocked in eater or NimC1 single mutants, but is abol-
ished in NimC1;eater double mutants, revealing key overlapping roles of these receptors 
(Melcarne 2019, B.L. personal communication). The Nimrod receptors SIMU and Drap-
er, a conserved member of the CED1/MEGF-10 family, bind phosphatidylserine, an eat-
me signal found on the surface of apoptotic cells (Kurant et al., 2008; MacDonald et al., 
2006; Manaka et al., 2004; Shklyar et al., 2013; Tung et al., 2013). Phagocytosis of apop-
totic corpses mediated by these two receptors induces signaling that modifies hemocyte 
expression profile and migration ability (Brooks et al., 2024; Goethem et al., 2012; Weav-
ers et al., 2016a). Some integrins such as βν and αPS3 function as phagocytic receptors 
in addition to their roles in hemocyte adhesion and migration (Nagaosa et al., 2011; 
Nonaka et al., 2013; Shiratsuchi et al., 2012). Integrin βν plays a role in phagocytosis 
of both apoptotic cells and S. aureus. Draper and integrin βν cooperate in defense 
against S. aureus by binding lipoteichoic acid (Hashimoto et al., 2009) and peptidogly-
can respectively (Shiratsuchi et al., 2012). Recent evidence suggests the CD36 factor 
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Figure 24 Phagocytic receptors 
Hemocyte receptors and opsonins have been implicated in phagocytosis of apoptotic cells (SIMU/
NimC4, Draper, βν-integrin, Orion, NimB4, Santa-maria (Ji et al., 2023; Kuraishi et al., 2009; Kurant 
et al., 2008; MacDonald et al., 2006; Manaka et al., 2004; Nagaosa et al., 2011; Nonaka et al., 2013; 
Petrignani et al., 2021; Tung et al., 2013)) and bacteria (Draper, NimC1, Eater, βν-integrin (Kocks et 
al., 2005; Kuraishi et al., 2009; Kurucz et al., 2007; Melcarne et al., 2019b; Shiratsuchi et al., 2012)). 
Croquemort, a member of the CD36 scavenger receptor family, is involved in phagosome maturation 
(Guillou et al., 2016; Han et al., 2014). Scavenger Receptor C1 (SR-CI) binds acetylated low density 
lipoproteins (AcLDLs) and a variety of other ligands, and although studies in cell culture have impli-
cated SR-CI in phagocytosis its roles in vivo are unclear (Abrams et al., 1992; Rämet et al., 2001). The 
early steps of bacterial phagocytosis by hemocytes remain poorly characterized. Phosphatidylserine 
(PS), Calcium-Binding Protein 1 (CABP1), calreticulin (Calr) and Pretaporter (Prtp) are potential ‘eat 
me’ signals exposed at the surface of apoptotic cells (Kuraishi et al., 2009, 2007; Okada et al., 2012; 
Shklover et al., 2015; Tung et al., 2013; Zheng et al., 2017). 

Santa-maria also contributes to phagocytosis of apoptotic cells mediated by SIMU by 
glia during embryogenesis (E. Kurant, personal communication). There are likely many 
other receptors that help in the uptake of bacteria or apoptotic cells, and many putative 
receptors (such as Scavenger Receptors C1-C4, several Nimrod family receptors and 
CD36 homologs) remain to be characterized.
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ii)	 Opsonins and phagosome maturation
Opsonins are secreted proteins that act as bridging molecules by binding target parti-
cles and promoting recognition by phagocytic receptors. They play key roles in particle 
uptake and engage specific phagosome maturation programs. Drosophila opsonins in-
clude NimB4, which binds to phosphatidylserine of apoptotic cells to promote uptake by 
plasmatocytes (Petrignani et al., 2021), and Orion which bridges phosphatidylserine and 
glial Draper (Ji et al., 2023). These may also include secreted lectins such as Lectin-galC1 
(galactin) and other C-type lectins (Ao et al., 2007; Petrignani et al., 2021; Tanji et al., 
2006), and other yet-uncharacterized secreted Nimrods (B1, B2, B3) (Melcarne et al., 
2019a; Somogyi et al., 2008; Zsámboki et al., 2013). 

Proteins involved in cytoskeletal control such as the nonaspanin transmembrane 
proteins TM9SF4 and TM9SF2 (Bergeret et al., 2008; Perrin et al., 2015), peroxisomes (Di 
Cara et al., 2017), glutamate transport (Gonzalez et al., 2013), and phagosome matura-
tion such as the Drosophila CD36 homolog Croquemort also contribute to phagocytosis 
(Figure 25). Recent evidence shows that Croquemort is not a phagocytic receptor of 
apoptotic cells and bacteria as initially thought, but is required for phagosome matu-
ration (Guillou et al., 2016). Croquemort contributes to clearance of non-apoptotic cell 
debris in the central nervous system, lipid metabolism, and may promote phagoptosis 
of nurse cells in the ovaries (Brown and Neher, 2012; Etchegaray et al., 2012; Meehan et 
al., 2016; Timmons et al., 2016; Woodcock et al., 2015). Disruption of the stepwise pha-
gosome maturation process results in phagocytic defects at late time points as bloated 
phagocytes are unable to continue taking up pathogens from the hemolymph, which 
also sensitizes the fly to infection (Kuo et al., 2018; Moy and Cherry, 2013; C.-O. Wong et 
al., 2017b). The p38 MAPK pathway also contributes to sequestration of some bacteria 
in phagosomes to promote disease tolerance (Shinzawa et al., 2009). 

Phagosomes undergo a maturation process comprised of stepwise fusion with en-
dosomes and lysosomes that add enzymes to the phagolysosomal compartment, which 
are required for particle degradation and bactericidal activity (Figure 25). Little is 
known of the hydrolases contributing to particle destruction in Drosophila phagosomes, 
but these likely include cathepsins (Kocks et al., 2003). Acidification of the phagosome 
lumen to a final pH of 4.5-5, which is required for enzyme activity and particle degra-
dation, is accomplished by proton-pumping vacuolar ATPase (V-ATPase) (Cheng et al., 
2005; Philips, 2005). Fusion events involve sequential recruitment of small GTPases of 
the Rab family (Kinchen and Ravichandran, 2008; Li et al., 2009; Nieto et al., 2010) and 
the HOPS (Homotypic Fusion and Protein Sorting) complex (Akbar et al., 2011; Kinchen 
and Ravichandran, 2008; Nickerson et al., 2009). Phagosome maturation may involve 
different proteins and processes depending on their cargo. For example, the calcium-per-
meable cation channel Amo, the Drosophila homolog of mammalian pkd2, is required 
for acidification of apoptotic-cell containing phagosomes downstream of SIMU (Brooks 
et al., 2024). Additional processes including glutamate transport and a nuanced intra-
cellular ROS response are also required to regulate and maintain endosome processing 
(Gonzalez et al., 2013; Myers et al., 2018). Interestingly, mutations in the Imd pathway 
can impair phagocytosis in the long term by preventing upregulation of NimC1 and Eat-
er through Relish (Wong et al., 2017b). Disruption of the endocytic machinery can also 
have strong effects on phagocytosis and activation of signaling pathways by affecting 
receptor localization (Box 6).
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Figure 25 Phagosome maturation
Phagocytosis and phagosome maturation consist of a stepwise process where distinct proteins are 
recruited to the phagosome at each stage (shown in boxes). 1 Target particle recognition by cell 
surface receptors on Drosophila professional phagocytes (plasmatocytes) triggers F-actin branch-
ing at the engulfment site and formation of a phagocytic cup. 2 Actin polymerization progressive-
ly extends protrusions around the particle that ultimately fuse at the leading edges to generate a 
new phagosome (Agaisse et al., 2005; Avet-Rochex et al., 2007; Pearson et al., 2003; Philips, 2005; 
Stroschein-Stevenson et al., 2005; Stuart et al., 2007, 2005; Ulvila et al., 2011). 3 The phagosome 
undergoes maturation through a series of fission and fusion events with cellular organelles (ear-
ly endosomes, late endosomes, lysosomes). The GTPase Rab5 is a key regulator of initial fusion 
events (Agaisse et al., 2005; Cheng et al., 2005; Horn et al., 2014; Peltan et al., 2012; Philips, 2005; 
Yousefian et al., 2013), while Rab7 is needed for late phagosome-lysosome fusion. 4 Phagosome 
maturation produces a highly acidic phagolysosome where target particles are digested (Akbar 
et al., 2011; Garg and Wu, 2014; Yousefian et al., 2013). During this last step, the phagolysosome 
acquires enzymes required for degradation including DNAses and proteases (Cheng et al., 2005; 
Di Cara et al., 2017; Kocks et al., 2003; Mukae et al., 2002; Myers et al., 2018; Philips, 2005; Seong et 
al., 2014, 2006). Inspired by (Melcarne et al., 2019a). Inset: scanning electron micrograph of plas-
matocyte (stained in red) from a third instar Drosophila larva engulfing S. aureus bacteria (from 
Melcarne et al., 2019a with permission).
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Box 6	 Immunity and the endocytic machinery
Disruption of the endocytic machinery may produce complex immune phenotypes 
as many components function in multiple fundamental cellular processes including 
phagocytosis, autophagy, and activation and attenuation of signaling pathways. Recep-
tor localization is important to regulate pathway activation in both Imd (Neyen et al., 
2016) and Toll signaling (Huang et al., 2010). Mutations affecting the HOPS complex 
proteins Vps16B (full-of-bacteria, fob) or Vps33B cause specific defects in maturation 
of bacteria-containing phagosomes. Furthermore, Vps33B mutants experience lethal 
over-activation of Imd signaling in response to heat-killed bacteria due to an inability 
to process endosomes bearing internalized PGRP-LC receptors, which accumulate in in-
tracellular compartments (Akbar et al., 2016, 2011). The result of Akbar (2016) suggests 
that PGRP-LC is capable of signaling from the endosomal membrane and requires pro-
cessing through multivesicular bodies (MVBs) to attenuate signaling (Akbar et al., 2016).

Mutation of another HOPS complex component, Deep orange (Vps18), consti-
tutively activates Toll signaling in larvae (Schmid et al., 2016). Endocytosis of the Toll 
receptor is required to activate signaling (Huang et al., 2010; Lund et al., 2010) and is 
dependent on the ESCRT-0 complex (Hrs, Mop, Stam) (Huang et al., 2010) which pro-
cesses ubiquitinated cargo for sorting in MVBs (Lund et al., 2010; Rusten et al., 2006) and 
is also involved in endocytosis and degradation of the Toll negative regulator Necrotic 
(Soukup et al., 2009). Conversely, disruption of the class III PI3 kinase complex (Vps15/
ird1, Vps34) involved in MVB sorting and autophagic clearance of ubiquitinated protein 
aggregates constitutively activates the Toll pathway, and may also simultaneously sup-
press Imd signaling (Lindmo et al., 2006; Schmid et al., 2016; Wu et al., 2007).

RNAi of components of the ESCRT-I and -II complexes prevents removal of 
PGRP-LC from the plasma membrane and extends Imd signaling but does not affect 
amplitude (Neyen et al., 2016), suggesting that a failure to process PGRP-LC through the 
MVB pathway maintains it in an active signaling state. Further studies may produce a 
deeper understanding of the nuanced effects of receptor localization and processing on 
immune signaling. Finally, it is important to note that deciphering direct versus indirect 
impacts of genes influencing host defense is often a challenge in the genetic dissection of 
the immune system. As an illustration of this, mutations affecting Deep orange (Vps18) 
impair the ecdysone response needed for maturation of the fat body and indirectly sup-
press Imd signaling in larvae (Meister and Richards, 1996), in addition to constitutively 
activating Toll signaling (Schmid et al., 2016).
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C.	 Encapsulation
Encapsulation is the process by which lamellocytes neutralise material within the larval 
body cavity that is too large to be removed by phagocytosis (Dolezal, 2023; Kim-Jo et al., 
2019; Lefèvre et al., 2012). Encapsulation protects against eggs of parasitoid wasps in the 
wild, but also attacks tumorous or damaged self-tissue within the larval body cavity (see 
Autoimmunity, page 127). Encapsulation of wasp eggs is thought to occur sequentially: 
first, humoral factors bind the eggs, followed by circulating plasmatocytes that begin 
to transdifferentiate into lamellocytes, and finally lamellocytes released by rupture of 
the lymph gland (Figure 26). Effective neutralization of wasp eggs requires recruitment 
of lymph gland hemocytes (Louradour et al., 2017). Lamellocytes adhere to the foreign 
object in layers and melanize, forming a tight capsule that isolates and bombards the en-
capsulated object with toxic reactive oxygen species produced by lamellocyte-exclusive 
PPO3, and PPO2 from crystal cells (Dudzic et al., 2015; Rizki and Rizki, 1994; Vass and 
Nappi, 2000)(see Systemic immunity: Melanization, page  71). Polymerized melanin 
chains can also form a physical barrier around parasites that trap ROS and direct it to-
wards invaders (Nappi et al., 2009). 

Lamellocytes are derived from both the peripheral hemocytes and the larval 
lymph gland. Differentiation of lamellocytes from both of these populations is thought 
to be controlled by primocytes, a subset of cells with a distinct transcriptional profile 
found in circulation and in the posterior signaling center (PSC) of the lymph gland 
(Hultmark and Andó, 2022). Signals from multiple pathways (JNK, PVR, JAK-STAT, 
Toll) contribute to differentiation of lamellocytes, which have a unique transcriptional 
profile and strongly express JNK pathway genes (Cattenoz et al., 2021, 2020; Cho et 
al., 2020; Csordás et al., 2021; Evans et al., 2022; Hirschhäuser et al., 2023; Hultmark 
and Andó, 2022; Irving et al., 2005; Krzemień et al., 2007; Morin-Poulard et al., 2013; 
Sorrentino et al., 2004; Tattikota et al., 2020; Tokusumi et al., 2009, 2018; Zettervall et al., 
2004; Zhang et al., 2023).

Figure 26 Encapsulation 
Schematic of the Drosophila larva encapsulation response against eggs of the parasitoid wasp Lep-
topilina boulardi. Egg oviposition triggers lamellocyte differentiation and fat body Toll activation, 
likely through ‘missing-self’ recognition mechanisms such as a lack of N-glycosylation on the 
surface of the wasp egg. The fat body produces factors such as Lectin-24A that opsonize the wasp 
egg and promote encapsulation. Differentiating lamellocytes increase Toll and JNK activity, ROS 
generation, and expression of the JAK-STAT inhibitor eye transformer (ET), leading to reduced 
JAK-STAT activity (see Figure 20). Inhibiting these changes prevents lamellocyte differentiation. 
Lamellocyte differentiation is energetically costly and requires glucose release from fat body glyco-
gen stores in response to an adenosine signal generated by the hemocytes (see Figure 27). As they 
differentiate, early lamellocytes release microparticles exposing hemomucin and phosphatidylser-
ine (PS), which stick to the encapsulation target and act as nucleation sites for hemocyte attach-
ment and melanization. Lamellocytes become thin and flat, increase expression of PPO3, and ad-
here to the wasp egg in layers. Crystal cells also adhere to the capsule and release PPO1/2 through 
rupture. Activity of these prophenoloxidases produces highly toxic oxygen radicals that kill the 
wasp egg (see Figure 12). Inspired from (Dolezal, 2023). Insets: A wasp egg viewed through 
translucent Drosophila melanogaster larva; capsules stained with B Hoechst and C phalloidin in 
Drosophila yakuba larvae. Photos courtesy Shubha Govind, Todd Schlenke. Figure created with 
BioRender.com, CC-BY-NC-ND.

https://www.BioRender.com
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During differentiation, microparticles (small extracellular vesicles) are released by 
budding of the hemocyte plasma membrane as they begin differentiation into lamello-
cytes. The microparticles, which attach to the encapsulation target and to other lamel-
locytes, expose hemomucin, which can bind coagulation proteins including lipophorin 
through transglutaminase crosslinking and is thought to glue the hemocytes together, 
and phosphatidylserine, which can recruit hemocytes and potently induce melanization 
(Bidla et al., 2009; Rizki and Rizki, 1979; Rizki and Rizki, 1983; Theopold and Schmidt, 
1997). Lamellocyte adhesion requires the βPS integrin Myospheroid (Mys) (Irving et al., 
2005), which also mediates hemocyte migration (Comber et al., 2013). Humoral factors 
also contribute to encapsulation: Lectin-24A is released from the fat body and coats para-
site eggs, greatly potentiating encapsulation and killing rates (Arunkumar et al., 2023). The 
Lectin-24A gene, controlled by the JAK-STAT and Toll pathways, is induced upon wasp 
infection with stronger expression in the posterior region of the larval fat body (Wertheim 
et al., 2005; Zhou et al., 2024). Interestingly, Dorsal rather than Dif seems to be the major 
regulator of the humoral immune response to parasites (Zhou and Day et al., 2024).

Little is known of the initial mechanisms that recognize foreign bodies and lead to 
encapsulation (Figure 26). Self-tissue can be also encapsulated under certain conditions: 
loss of surface protein N-glycosylation on host tissues triggers encapsulation in the pres-
ence of lamellocytes (Mortimer et al., 2021), and disrupted basement membranes exposing 
phosphatidylserine are also sufficient to recruit hemocytes and produce melanization (Di-
wanji and Bergmann, 2020; Kim and Choe, 2014; Mortimer et al., 2021; Pastor-Pareja et al., 
2008; Rizki, 1960). This suggests that patrolling hemocytes identify intact basement mem-
brane as self, while parasitoid eggs are recognized via a missing-self mechanism (Mor-
timer et al., 2021; Pradeu et al., 2024) (see Autoimmunity, page 127). Wounding caused 
by oviposition may induce differentiation of a few lamellocytes which then survey the 
hemocoel for incorrectly glycosylated surfaces (Márkus et al., 2005; Mortimer et al., 2021; 
Rizki and Rizki, 1974; Leitão et al., 2024), and trigger massive differentiation of lamello-
cytes upon recognition. Alternatively, secreted or transmembrane receptors may exist that 
directly recognize wasp antigens and initiate lamellocyte formation through an unknown 
pathway (Arunkumar et al., 2023). Consistent with this latter hypothesis, oil beads coated 
in wasp extracts become more melanized when injected into larvae than uncoated beads or 
beads coated with Drosophila extracts (Leitão et al., 2024). In an example of a host-patho-
gen arms race, wasps have evolved many strategies that target aspects of the host immune 
response to promote survival of their eggs within Drosophila larvae (Box 7).

D.	 Hemocytes in signal transduction and local repair
Hemocytes express complete Toll and Imd pathways and are sources of immune effectors 
including AMPs and PPOs (see Systemic Immunity: Melanization, page 71) (e.g., Dudzic 
et al., 2019, 2015; Sanchez Bosch et al., 2019), and additionally act in signal transduction in 
a number of processes (Figure 22). Hemocytes trigger intestinal stem cell proliferation fol-
lowing systemic wounding through the release of Upd3 (Chakrabarti et al., 2016). Hemo-
cytes also link oral bacterial infection to systemic fat body expression of antimicrobial pep-
tides in larvae (Basset et al., 2000; Charroux and Royet, 2009; Foley and O’Farrell, 2003)
(see Systemic immune activation in response to oral infection, page 118). In response to 
infection, Spatzle is strongly upregulated in the hemocytes, and hemocyte-secreted Spatzle 
is thought to act as a cytokine to activate the Toll pathway in the fat body (Irving et al., 2005; 
Ming et al., 2014; Parisi et al., 2014; Shia et al., 2009; Tattikota et al., 2020). In addition to 
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its signaling role in hemocytes, ROS produced by hemocytes may be microbicidal against 
certain pathogens (Shaka et al., 2022; Sekihara et al., 2016).

Hemocytes contribute to wound healing and tumor neutralization (Araki et 
al., 2019; Chakrabarti and Visweswariah, 2020; Fogarty et al., 2016; Parisi et al., 2014) 
(see Systemic wound and stress responses, page  77 and Immunity in tumor control, 
page 129). They also produce and deposit extracellular matrix, which is important in 
maintaining self/non-self distinctions and preventing autoimmune activation (see Auto-
immunity, page 127) (Fessler et al., 1994; Goto et al., 2001; Irving et al., 2005; Lunstrum 
et al., 1988; Nelson et al., 1994). An interesting aspect of hemocytes is their ability to act 
locally in contact with specific tissues (Van De Bor et al., 2015). For example, hemocytes 
can bind to tissues and target cells for apoptosis by expressing Eiger, which binds the 
TNF receptors Grindelwald or Wengen on target cells (Araki et al., 2019; Fogarty et al., 
2016; Parvy et al., 2019).

Hemocytes are essential for embryogenesis and metamorphosis, which involve 
major tissue remodeling (Charroux and Royet, 2009; Defaye et al., 2009; Ghosh et al., 
2020; Lanot et al., 2000; Sampson et al., 2012; Stephenson et al., 2022). Although meta-
morphosis can be completed successfully even when the great majority of these hemo-
cytes are ablated (Charroux and Royet, 2009; Defaye et al., 2009), complete deletion of 

Box 7	 Wasps target the Drosophila immune system
Parasitoid wasps can inject discrete particles and a number of proteins that target the 
Drosophila larval immune response to protect the wasp egg. The nature of these parti-
cles and venom protein constituents are not well understood. Venom proteins include 
the SERCA-type calcium pump of Ganaspis that antagonizes host hemocyte calcium 
signaling to inhibit encapsulation (Mortimer, 2013); the 40 kDa surface/spike protein 
SSp40 of Leptopilina heterotoma, which has similarities to the IpaD/SipD family of Shi-
gella and Salmonella enteric pathogen proteins and promotes lysis of host lamellocytes 
(Heavner et al., 2017); and the RhoGAP protein of L. boulardi that modulates the host 
actin cytoskeleton (Colinet 2009). The venom glands of Leptopilina spp. produce mem-
brane-bound extracellular vesicles (EVs, also called venosomes or virus-like particles, 
VLPs) (Chiu et al., 2006; Heavner et al., 2017; Morales et al., 2005; Ramroop et al., 2021; 
Wan et al., 2020); these vesicles have not been reported in Ganaspis venom (Chiu et al., 
2001). Leptopilina heterotoma vesicles have been shown to enter and affect the viability 
of both plasmatocytes and lamellocytes (Chiu and Govind, 2002; Ramroop et al., 2021). 
The vesicles of L. boulardi enter larval hemocytes through the endocytic pathway and 
affect lamellocyte shape or cause cell lysis that disrupts encapsulation (Wan et al., 2020). 
The venom of Leptopilina boulardi contains serpins that inhibit melanization (Colinet 
et al., 2009). Leptopilina victoriae virulence factors target and counteract progressive sur-
face N-glycosylation of hemocytes transforming into lamellocytes to decrease efficacy of 
capsule formation (Mortimer et al., 2012). Multiple wasp species target the JAK-STAT 
signaling pathway, which regulates lamellocyte differentiation (Brantley et al., 2024). 
Finally, some species like Asobara tabida inject eggs with a sticky chorionic surface that 
adheres to host tissues, preventing encapsulation by hemocytes (Prevost et al., 2005). 
These studies illustrate the variety of ways in which parasitoids disrupt host immunity 
to promote egg survival.
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hemocytes with a strong Hemolectin driver (e.g., Hml-Gal4; UAS-Bax) causes pupal le-
thality (Stephenson et al., 2022). Pupae with reduced hemocyte numbers over-activate 
other immune programs including melanization and AMP production in response to 
microbes released from the gut during remodeling of the digestive tract, and under con-
ventional rearing conditions the majority do not survive metamorphosis (Arefin et al., 
2015; Charroux and Royet, 2009; Defaye et al., 2009; Glittenberg et al., 2011; Shia et al., 
2009) (see Protection of host tissues from antimicrobial peptides, page 88).

E.	 Hemocytes are a central metabolic hub
Hemocytes are central regulators and major consumers of metabolic stores. Hemocytes 
closely link JAK-STAT activity, insulin signaling, immunity, and lipid metabolism in a 
number of important ways. Under homeostatic conditions, hemocytes promote normal 
insulin signaling and growth, and facilitate lipid storage in the larval fat body through 
PDGF/VEGF signaling (Cox et al., 2021). In adults, hemocyte-derived Upd3 promotes 
normal levels of JAK-STAT signaling in muscles that is essential for healthy metabo-
lism (Kierdorf et al., 2020). As they are metabolically demanding, the number of hemo-
cytes is reduced under nutrient-deficient conditions (Dolezal et al., 2019; Ramond et al., 
2020a). This is in part mediated by the adipokine NimB5, which is secreted from the fat 
body in nutrient-poor conditions and binds to hemocytes to reduce hemocyte prolifera-
tion, freeing up resources for development and growth (Ramond et al., 2020b). Blocking 
NimB5 results in hemocyte proliferation, energy depletion and eventual death of larvae 
raised on a poor diet (Ramond et al., 2020b). Conversely, a chronic lipid-rich diet in Dro-
sophila induces overproduction of Upd3 by macrophages, causing JAK-STAT mediated 
insulin insensitivity and reduced lifespan (Woodcock et al., 2015).

Hemocyte activation in response to wasp parasitization in larvae or infection in 
adult flies incurs a huge metabolic cost that draws on stored energy in the fat body to 
meet hemocyte nutritional demand (Bajgar et al., 2015; Dolezal et al., 2019) (Figure 27). 
Differentiation of lamellocytes, which is required for proper encapsulation, is energetical-
ly costly (Bajgar et al., 2015). Hemocyte activation triggers a metabolic switch to aerobic 
glycolysis (Bajgar et al., 2015; Bajgar and Dolezal, 2018; Krejčová et al., 2019), a process 
that provides energy more quickly than oxidative phosphorylation, but at much lower ef-
ficiency. Increased aerobic glycolysis is accompanied by suppression of anabolic enzymes 
and upregulation of glycolytic processes that mobilize fat body nutrient stores, resulting 
in hyperglycemia (increased circulating glucose and trehalose). Increased circulating sug-
ars are consumed by hemocytes during the immune response (Bajgar et al., 2015). This 
metabolic switch is initiated by adenosine produced by the hemocytes (Bajgar et al., 2015); 
later on in infection, aerobic glycolysis is inhibited by adenosine inhibitor ADGF-A also 
produced by the hemocytes (Bajgar and Dolezal, 2018). This metabolic switch is required 
for lamellocyte differentiation and effective resistance to certain bacterial infections in 
adult flies (Bajgar et al., 2015; Bajgar and Dolezal, 2018).

Aerobic glycolysis in adult flies in response to Streptococcus infection is mediated 
by Hypoxia inducible factor 1α (HIF1α) and lactate dehydrogenase (LDH) in hemocytes 
(Krejčová et al., 2019). In mammals, NF-κB activation through Toll or TNF-R signaling 
stabilizes HIF1α to promote aerobic glycolysis (Jung et al., 2003; Siegert et al., 2015). 
Parasitoid wasp infestation of larvae promotes secretion of Upd ligands from hemocytes 
that increase JAK-STAT and subsequently insulin (TOR) signaling in muscles, which 
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Figure 27 Metabolic reprogramming upon infection or parasitization
Hemocyte activation and differentiation is highly energetically costly. Infection or parasitization 
induces a metabolic switch where energy stores are redirected away from growth and homeostasis 
towards defense (the ‘privileged immune system’). Activated lamellocyte precursors release adenos-
ine (Ado), which binds the adenosine receptor (AdoR) on the fat body, inhibiting anabolic processes 
and slowing down larval development. Late in the parasitization response, hemocytes also release 
the Ado inhibitor ADGF-A to attenuate resource stealing by the immune system (Dolezal et al., 
2019). Glycogen stores in the muscles are also mobilized to provide energy for lamellocyte differ-
entiation. Upd ligands produced by the hemocytes activate JAK-STAT in the muscles, increasing 
expression of the insulin inhibitor ImpL2 and increasing free glucose. Infection also promotes the 
release of stored nutrients to support immune function. Toll or JNK activation suppresses insu-
lin signaling, increasing free glucose and upregulating the FOXO target 4E-BP, which promotes 
cap-independent translation of genes including some AMPs while reducing cap-dependent trans-
lation of targets such as anabolic enzymes (see Metabolic adaptation associated with systemic an-
timicrobial responses, page  69). This biases resources towards translation of immune proteins. 
Compiled with data from: (Bland, 2022; Dolezal et al., 2019; McMullen et al., 2023; Roth et al., 2018; 
Vasudevan et al., 2017). Figure created with BioRender.com, CC-BY-NC-ND.

http://BioRender.com
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are a major glycogen store in the larva (Yang et al., 2015; Yang and Hultmark, 2017). 
Surprisingly, these authors found that blocking JAK-STAT or insulin signaling in mus-
cles reduced circulating sugars and impaired lamellocyte differentiation in response to 
wasp parasitization, indicating that the muscles act as a source of energy to fuel hemo-
cytes. Late in infection, insulin signaling is suppressed. The metabolic switch in mac-
rophages is a response that is conserved in mammals and uses homologous processes, 
making Drosophila an attractive model to study this phenomenon.

The metabolic switch can also have maladaptive effects in certain infectious sce-
narios, as an increase in circulating glucose or intermediates of aerobic glycolysis may 
benefit certain pathogens (Bajgar and Dolezal, 2018; Passalacqua et al., 2016). Similar-
ly, accumulation of lipid droplets triggered by Upd3-mediated JAK-STAT signaling in 
hemocytes in response to Mycobacterium marinum infection promotes intracellular sur-
vival and proliferation of this pathogen (Péan et al., 2017). Accumulation of lipid drop-
lets also transiently occurs in hemocytes phagocytosing tumorous tissue (Mari et al., 
2023); the significance of this is currently unknown. Lipid droplets and the proteins they 
sequester, including histones, may have conserved roles in bacterial resistance (Anand 
et al., 2012; Bosch et al., 2021; Bosch and Pol, 2022; Stephenson et al., 2021; Tang et al., 
2021), viral immunity (Monson et al., 2021), and ROS detoxification (Wang et al., 2023). 
The roles of lipid droplets and trafficking in immunity are exciting avenues to explore 
further (Harsh et al., 2019).

Box 8	 Immune priming in Drosophila
Immune priming is a widespread phenomenon among arthropods describing improved 
survival of previously-infected individuals compared to naïve controls upon re-infection 
(Pradeu et al., 2024; Prakash et al., 2023; Sadd and Schmid-Hempel, 2006; Tang et al., 2023). 
Arthropods lack adaptive immune programs such as somatic recombination of B- and 
T-cell receptor genes and differentiation of memory cells common to vertebrates, so the in-
nate mechanisms underlying improved survival upon re-infection in Drosophila have been 
of great interest since their discovery (Boman et al., 1972; Cooper and Eleftherianos, 2017; 
Kurtz, 2005; Pham et al., 2007). Many early studies of insect priming lacked conceptual 
precision and appropriate controls, or were done in very artificial settings, with unclear 
in natura relevance (Hauton and Smith, 2007). Some early results proposed mechanisms 
similar to vertebrate immune memory, such as production of ‘antibody-like’ proteins from 
the hypervariable Dscam1 locus, which has the potential to encode thousands of isoforms 
(Watson et al., 2005). However in Drosophila at least, Dscam1 isoforms invariably contain 
a transmembrane domain (Celotto and Graveley, 2001), are not upregulated following in-
fection (Armitage et al., 2014), and appear to have roles in hemocyte proliferation rather 
than opsonization (Ouyang et al., 2020). Recent evidence suggests that trans-generational 
immune priming can occur against viruses but not bacteria in Drosophila, although the 
mechanisms behind this are not yet well understood (Mondotte et al., 2020; Radhika and 
Lazzaro, 2023) (see The antiviral response, page 31). 

Recently, the diverse mechanisms underlying priming in insects have been 
conceptually clarified (Pradeu et al., 2024; Pradeu and Du Pasquier, 2018; Tang et al., 
2023). Priming in Drosophila can be broadly grouped into four categories: (i) a persistent 
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low-level infection that continuously stimulates the immune system; (ii) the perdur-
ance of effectors or activated hemocytes from a primary challenge persist, increasing 
baseline resistance against subsequent infection (Uttenweiler-Joseph et al., 1998); (iii) 
a shift in basal immunity leaves the fly in an ‘anticipatory’ state of immune readiness, 
enabling stronger or more rapid responses upon secondary challenge (Chakrabarti and 
Visweswariah, 2020; Fuse et al., 2022; Mulcahy et al., 2011); (iv) a primary challenge 
shifts baseline physiology such that subsequent infection induces a different set of genes 
(Cabrera et al., 2023; Fuse et al., 2022) (Figure Box 8). Simple wounding, challenge 
with heat-killed pathogens, or low-virulence infections that are cleared can also have 
a persistent priming effect (Aymeric et al., 2010; Chakrabarti and Visweswariah, 2020; 
Christofi and Apidianakis, 2013; Fuse et al., 2022; Pham et al., 2007). 

In Drosophila, immune priming, far from being a general property of the immune 
system, requires specific circumstances to occur (Acuña Hidalgo and Armitage, 2022). 
The success of priming may depend on whether the immune mechanisms stimulated 
by the primary pathogen are effective defenses against the secondary pathogen. Priming 
is somewhat dose-specific, as too high of an initial dose of pathogenic bacteria either 
weakens or kills the fly, while a low dose or weak initial pathogen may not have a suf-
ficient priming effect (Boman et al., 1972; Cabrera et al., 2023) (see Box 1). Priming 
is also dependent on infection route, as oral infection may protect against subsequent 
oral infections, but not septic infections (Liehl et al., 2006; Mulcahy et al., 2011). As the 
rapidity of the immune response is a key factor in determining survival against some 
pathogens (Duneau et al., 2017a; Park et al., 2005), a higher basal immune state or resid-
ual effectors such as AMPs in the hemolymph can effectively increase resistance against 
re-infection; for Gram-negative bacteria, AMPs are specifically important for resistance 
(Hanson et al., 2019b). In contrast, a recent study found that priming against E. faecalis 
(a Gram-positive bacterium) relied on metabolic effects promoting tolerance (Cabrera et 
al., 2023). Some residual effectors could similarly promote immune tolerance, such as 
Turandots (Rommelaere et al., 2024) or Bomanins (Xu et al., 2023a) (see Protection of 
host tissues from antimicrobial peptides, page 88). 

The priming effect against most pathogens has been found to require hemocytes in 
some capacity (Aymeric et al., 2010; Cabrera et al., 2023; Chakrabarti and Visweswariah, 
2020; Fuse et al., 2022; Pham et al., 2007), suggesting that mechanisms such as hemocyte 
differentiation or metabolic reprogramming may be central to priming effects (Cabrera 
et al., 2023; Fuse et al., 2022). Many studies show a requirement for Toll or Imd pathways 
for priming, but these effects are often not attributable to effector activation through 
these pathways (Aymeric et al., 2010; Cabrera et al., 2023; Christofi and Apidianakis, 
2013; Pham et al., 2007; Prakash et al., 2021). Therefore, investigating non-canonical 
roles of NF-κB signaling may be a promising direction for disentangling the mechanisms 
behind pathogen-specific immune priming.

Finally, it should be noted that although priming with bacteria has variable ef-
fects, RNAi protection against viruses is highly specific and can reproducibly generate a 
sustained effect that protects against secondary infection, reminiscent of immune mem-
ory in vertebrates. siRNA can be amplified by RNA-dependent polymerase, which gen-
erates secondary siRNA and propagates the protection (Bonning and Saleh, 2021; Pradeu 
et al., 2024).
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Figure Box 8 Immune priming in Drosophila
Drosophila lacks the adaptive immune mechanisms known in vertebrates but regardless shows 
improved survival upon re-infection with certain pathogens. Depending on the physiological re-
sponse elicited by the initial pathogen and dose, these effects are attributable to some combination 
of A increased basal immune activation due to persistent low-level infection, B residual effectors 
or cellular changes, C increased basal immunity due to unknown mechanisms, or D a change in 
physiology resulting in induction of a distinctly different transcriptional response upon second-
ary infection. For discussion on innate immune memory, see (Pradeu et al., 2024; Pradeu and Du 
Pasquier, 2018; Tang et al., 2023). The sustained RNAi response is not shown. Figure created with 
BioRender.com, CC-BY-NC-ND.

https://www.BioRender.com
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Gut and epithelial immunity

Barrier epithelia, which are constantly exposed to microorganisms, require robust sys-
tems for recognizing and managing pathogens while protecting symbionts. This is par-
ticularly crucial for insects like Drosophila, which primarily feed on decaying material. 
Various factors including physical and chemical barriers, peristalsis, and inducible de-
fense mechanisms, all work together to provide protection in the gut (Buchon et al., 
2013a, 2013b; Miguel-Aliaga et al., 2018; Tafesh-Edwards and Eleftherianos, 2023b). The 
gut is a compartmentalized organ with functional diversification of the immune sys-
tem along the length of the gut, highlighting the importance of compartment-specific 
defense mechanisms (Buchon et al., 2013b; Marianes and Spradling, 2013) (Figure 28). 
While most studies have focused on the midgut, it is likely that regions of the foregut 
(the cardia/proventriculus in adults and larvae, and the crop in adults) play important 
roles in host defense (Stoffolano and Haselton, 2013; Zhu et al., 2024). 

A.	 Physical and chemical barriers to infection
Increased intestinal permeability is a direct precursor of mortality in flies, revealing the 
importance of the gut barrier in health (Rera et al., 2012; Sekihara et al., 2016). The di-
gestive tract is lined with a protective protein-chitin barrier, shielding it from abrasive 
food particles and enteric pathogens (Hegedus et al., 2009). While the foregut and hind-
gut feature an impermeable cuticle, the midgut relies on the more permeable peritrophic 
matrix. The peritrophic matrix is continuously produced in the proventriculus of larvae 
and cardia of adults by specific cells, and is modified as it travels along the midgut (Hege-
dus et al., 2009; King, 1988; Miguel-Aliaga et al., 2018; Rizki, 1956). A subset of enteric 
neurons innervating the anterior midgut regulate the proventricular structure and the 
permeability of the peritrophic matrix (Kenmoku et al., 2016). Elimination of these neu-
rons or loss of function of the Crystallin gene (Crys), which encodes a structural compo-
nent, causes a leaky peritrophic matrix phenotype. Crystallin deficient flies show higher 
susceptibility to oral bacterial and viral infection and ingestion of toxin, confirming its 
protective role (Bonnay et al., 2013; Kuraishi et al., 2011; Nehme et al., 2007; Shibata et 
al., 2015; Villegas-Ospina et al., 2021). The peritrophic matrix also influences Imd path-
way immune reactivity, likely by limiting the diffusion of peptidoglycan from the gut 
lumen into gut epithelial cells (Kuraishi et al., 2011). Interestingly, elimination of the 
peritrophic matrix at the adult stage through knockdown of the drop-dead gene is not 
lethal (Conway et al., 2018). 

Most entomopathogenic bacteria, such as Pseudomonas entomophila, Serratia 
marcescens and Bacillus thuringiensis infect their host by producing pore-forming tox-
ins, which cross the peritrophic matrix and target the midgut epithelium (Hertle, 2002;  
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Figure 28 The gut immune response
A Schematic showing regions of the Drosophila adult gut. PV, proventriculus; FG, foregut; C, 
crop; MG, midgut; MpT, Malpighian tubules; HG, hindgut; R, rectum. The foregut and hindgut 
are of ectodermal origin and are lined with cuticle, while the midgut is derived from the endo-
derm and is lined with peritrophic matrix. Colored regions show differential expression of positive 
and negative regulators of immune pathways in the major gut regions, which tunes the immune 
response in the gut to accommodate commensal bacteria and eliminate pathogens. Toll pathway 
genes are highly expressed in the fore- and hindgut regions but absent in the midgut. The Imd 
receptor PGRP-LC and ROS-producing oxidase Duox are also more strongly expressed in the fore- 
and hindgut than the midgut. The Imd negative regulator Pirk is strongly expressed in the crop. 
The adult midgut can be further subdivided based on differences in morphology, cell composition 
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Kurz et al., 2003; Lee et al., 2016; Nehme et al., 2007; Opota et al., 2011). Some bacteria 
such as P. entomophila also secrete proteases that degrade the peritrophic matrix, facili-
tating the action of pore-forming toxins (Shibata et al., 2015). Cross-linking of the matrix 
by enzymes like transglutaminase creates a balance between resistance to pore-forming 
toxins and sufficient permeability for nutrient absorption (Hachfi et al., 2023; Kuraishi et 
al., 2011; Lee et al., 2016; Shibata et al., 2015). In addition to the peritrophic matrix, tight 
septate junctions of the epithelium prevent entry of most pathogens from the gut to the 
hemolymph compartment (Bonnay et al., 2013; Kuraishi et al., 2011; Nehme et al., 2007; 
Shibata et al., 2015; Villegas-Ospina et al., 2021) (but see Systemic immune activation in 
response to oral infection, page 118). We still know little about the structure of Drosoph-
ila peritrophic matrix, the role of the numerous Drosophila peritrophin genes, or how 
this matrix is generated in the cardia/proventriculus and modified along the digestive 
tract. However, an extensive single cell characterization of the foregut, including the pro-
ventriculus, has recently provided new insight on this complex structure, paving the way 
for a genetic dissection of this important immune and digestive barrier (Zhu et al., 2024).

Although the Drosophila genome encodes a large set of mucin and mucin-relat-
ed proteins that are enriched in prolines and potentially glycosylated threonines and 
serines (Buchon et al., 2013b; Syed et al., 2008), we know almost nothing about mucins 
in the Drosophila digestive tract and their possible role in host defense. The gut of Dro-
sophila melanogaster includes an acidic region (~pH 2) called the copper cell region or 

and gene expression into regions R1-R5. R3 contains the copper cell region, which produces high 
acidity and aids in bacterial elimination (Buchon et al., 2013b; Dutta et al., 2015). The larval mid-
gut is similarly divided based on morphology and expression, but regional gene expression differs 
from the adult fly (Bosco-Drayon et al., 2012). B Electron microscopy cross section of Drosophila 
gut orally infected with P. carotovorum Ecc15 bacteria. PM, peritrophic matrix; E, epithelium; VM, 
visceral muscles. C Schematic of gut cross-section showing epithelial thinning response following 
oral infection with bacteria producing pore-forming toxins (such as Serratia). Apical extrusion 
of cytoplasm reduces transit of bacteria that have entered the epithelium to the hemolymph, re-
ducing opportunity for systemic infection. Enterocytes rapidly recover following this response. 
Inspired by (Lee et al., 2016). D Gut responses following oral infection with Ecc15. EC, enterocyte 
(tan); ISC, intestinal stem cell (purple); EB, enteroblast (green); EE, enteroendocrine cell (blue); 
VM, visceral muscles (red). D1, Pathogenic bacteria in the lumen activate JNK and Relish in a 
subset of enterocytes, suppressing GATAe activity. Imd activation triggers AMP expression in a 
subset of gut cells to suppress pathogens. The reactive oxygen species HOCl is produced in the gut 
lumen by Duox in enterocytes (see Box 9). D2, Enterocytes with increased JNK and Relish activ-
ity and reduced GATAe delaminate and become disordered. Trp1A channels in enteroendocrine 
cells bind HOCl and initiate calcium flux leading to export of DH31 neuropeptide, which likely 
binds the receptor DH31-R in the longitudinal visceral muscles and causes them to spasm, short-
ening the gut and promoting expulsion of bacteria through increased defecation. D3, Enterocytes 
strongly activate JNK and undergo anoikis (apoptosis as a result of delamination). Differentiation 
of enteroblasts to enterocytes rapidly restores gut epithelium. Gut length rapidly recovers. D4, 
Proliferation of intestinal stem cells mediated by EGF-R restores enteroblasts, and differentiation 
completes restoration of the gut epithelium. JAK-STAT-mediated production of the EGF-R ligand 
Vein in the visceral muscles in response to Upd3 secreted by enteroblast and enterocytes promotes 
EGF-R activity. Compiled with data from: (Benguettat et al., 2018; Buchon et al., 2010; Zhou et al., 
2013). Figure created with BioRender.com, CC-BY-NC-ND.

https://www.BioRender.com
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R3 region (Buchon et al., 2013b; Overend et al., 2016). The maintenance of the low pH 
in this region is dependent on H+ V-ATPase, together with K+/Cl− and Na2+/-HCO3- 
transporters (Buchon et al., 2013b; Overend et al., 2016). Suppression of the acidic region 
by silencing the V-ATPase gene increases susceptibility to Pseudomonas and results in a 
higher abundance of key members of the gut microbiota (Acetobacter, Lactobacillus, and 
Lactiplantibacillus), pointing to its role in host defense and homeostasis.

Interestingly, the pH of the acidic region is reduced in germ-free Drosophila, indi-
cating of a role of the gut bacteria in shaping the pH conditions of the gut (Barron et al., 
2024; Overend et al., 2016). Compartmentalization of the gut tends to decline with age, 
leading to reduced acidity in the R3 region (Buchon et al., 2013a; Li et al., 2016). This 
leads to a concomitant increase in microbiota load and dysbiosis, with a change in the 
Acetobacter/Lactobacillus ratio, contributing to gut dysplasia and aging (Li et al., 2016). 

B.	 Inducible antimicrobial responses in epithelia
Transcriptomic studies reveal that the gut inducible immune response is complex and 
compartmentalized (Buchon et al., 2013b, 2009). Imd-deficient flies are susceptible to 
oral bacterial infection, highlighting its role as a key regulator of the gut immune re-
sponse (Buchon et al., 2009; Liehl et al., 2006; Marra et al., 2021a; Ryu et al., 2006). 
Ingestion of Gram-negative bacteria triggers specific regional expression of AMP genes 
(Buchon et al., 2009b) through the Imd transmembrane receptor PGRP-LC in the ec-
todermal parts of the gut, and the intracellular receptor PGRP-LE in the midgut (Bos-
co-Drayon et al., 2012; Joshi et al., 2023; Neyen et al., 2012) (Figure 28A). 

Negative regulators of the Imd pathway, including enzymatic PGRPs (PGRP-LB, 
PGRP-SC1A/1B/2) that scavenge peptidoglycan and gut-specific regulators (Trabid, 
LUBEL), balance the antibacterial response and immune tolerance (Aalto et al., 2019; 
Bosco-Drayon et al., 2012; Costechareyre et al., 2016; Fernando et al., 2014; Lhocine et 
al., 2008; Paredes et al., 2011). Flies lacking these negative regulators exhibit excessive 
and harmful immune activation to innocuous infection (Paredes et al., 2011). Peptido-
glycan fragments (notably TCT) can also traverse the gut and remotely induce a sys-
temic immune response through signal transduction involving the hemocytes (Basset 
et al., 2000; Charroux et al., 2018; Neyen et al., 2012) (see Systemic immune activation 
in response to oral infection, page 118). Regional transcription factors like Nubbin and 
Caudal further shape the Imd pathway response along the gut (Dantoft et al., 2016; Lind-
berg et al., 2018; Ryu et al., 2004; Ryu et al., 2008). Both the JNK and Imd pathways 
contribute to enterocyte delamination, a cell shedding process that might promote bac-
terial elimination (Loudhaief et al., 2017; Zhai et al., 2018a) (Figure 28C, D). To mitigate 
excessive damage, it has been proposed that Diedel, a cytokine that inhibits the Imd 
pathway (Lamiable et al., 2016b), is produced by the fat body and binds to integrins of 
gut epithelial cells to oppose their delamination and apoptosis (Mlih and Karpac, 2022). 

The Toll and melanization pathways are functional in the foregut and hindgut, 
which are of ectodermal origin, but not in the midgut (Figure 28A). Interestingly, some 
putative antifungal peptides with homology to Drosomycin, Drsl2 and Drsl3, are induced 
in the gut via the JAK-STAT pathway (Buchon et al., 2009b; Osman et al., 2012). Several 
lysozymes are also constitutively expressed in the midgut at high levels. These likely 
play a digestive role but could shape the immune response by cleaving immunogenic 
peptidoglycan (Hultmark, 1996; Marra et al., 2021a). Many aspects of gut immunity act 
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to control systemic immune activation in response to bacteria within the gut lumen (see 
Systemic immune activation in response to oral infection, page 118).

C.	 Pathogen expulsion via gut peristalsis
Ingestion of pathogenic bacteria triggers strong contractions of longitudinal visceral 
muscles which shorten the gut, facilitate rapid expulsion of bacteria, and limit oppor-
tunities to colonize the midgut (Benguettat et al., 2018; Du et al., 2016) (Figure 28). 
HOCl is produced by Duox in enterocytes upon oral infection (Box 9), which is sensed 
by the TrpA1 receptor in enteroendocrine cells. This receptor produces the neuropeptide 
DH31, which activates spasms in nearby visceral muscles. Ongoing work suggests that 
in larvae, oral infections trigger contractions of a gut sphincter that traps bacteria in the 
anterior midgut and exposes them to antimicrobial peptides produced by Imd signal-
ing (Tleiss et al., 2024). Interestingly, only pathogens such as P. carotovorum Ecc15 are 
trapped in the anterior midgut, while symbiotic bacteria such as L. plantarum can pass 
through and reach the posterior midgut. This mechanism is specific to larvae; in adults, 
pathogenic bacteria are rapidly expelled by peristalsis (Tleiss et al., 2024).

D.	 Epithelial thinning and renewal
Oral bacterial infection triggers increased epithelial renewal through stem cell prolifera-
tion. This process, which is crucial to maintaining gut integrity, involves many pathways 
including EGFR and JAK-STAT (Biteau and Jasper, 2011; Buchon et al., 2010, 2009b; 
Jiang et al., 2011, 2009). Epithelial renewal in response to the symbiotic bacteria Lac-
tobacillus plantarum or the opportunistic pathogen Pectobacterium carotovorum Ecc15 
involves the NADPH oxidase Nox (Iatsenko et al., 2018; Jones et al., 2013; Patel et al., 
2019). Lactate produced by L. plantarum is metabolized by the host to produce the Nox 
substrate NADPH, which increases ROS production and stimulates epithelial turnover 
(Iatsenko et al., 2018) (Figure 28, Box 9). 

Study of the roles of Duox in the gut have produced some contradictory results. 
An initial study using RNAi suggested Duox was required to produce microbicidal ROS 
(Ha et al., 2005; Westlake et al., 2024), but ROS has highly variable effects on different 
species of gut microbes, promoting the growth of some while mildly inhibiting others 
(Sekihara et al., 2016). Recent results suggest that Duox may contribute to bacterial elim-
ination primarily by playing a signaling role in gut peristalsis (Benguettat et al., 2018)
(see Pathogen expulsion via peristalsis, page 113). Notably, Duox also promotes tracheal 
branching, facilitating gut oxygenation needed to sustain epithelial renewal (Perochon 
et al., 2021; Tamamouna et al., 2021). Oxygenation levels also likely influence compo-
sition of gut microbiota. A recent study shows that ROS produced by Duox in the Mal-
pighian tubules triggers Upd3 production in response to oral infection. Upd3 is then 
flushed forward from the Malpighian tubules to the anterior midgut by a countercurrent 
flow initiated by infection, where it stimulates epithelial renewal (Liu et al., 2023). Coun-
tercurrent flow has been described in the digestive tract of several insects (Terra, 1988) 
and may reveal further mechanisms through which Malpighian tubules contribute to 
gut immunity. Several studies also find a role for Uracil produced by pathogenic but not 
symbiotic bacteria in stimulating Duox activity and ROS production (Du et al., 2016; 
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Box 9	 ROS production from NADPH and  
ROS detoxification

Duox and Nox transmembrane oxidases can produce extracellular superoxide (O2
–, very 

unstable) from oxygen while oxidizing NADPH to NADP+ + H+ (Lambeth and Neish, 
2014). Duox has an additional extracellular peroxidase domain that can produce hydro-
gen peroxide (H2O2, comparatively stable) from O2

– (Figure Box 9). The peroxidase do-
main of Duox may also produce hypochlorous acid (HOCl), which is highly unstable and 
may be microbicidal (Ha et al., 2005, but see Westlake et al., 2024) or fulfill a signaling 
role in expulsion of pathogenic bacteria (Benguettat et al., 2018; Du et al., 2016). Because 
they are highly reactive, ROS typically act locally in the region that they are produced. 
Iatsenko and colleagues proposed that the Nox substrate NADPH is generated by oxida-
tion of microbiota-derived lactate by the intestinal lactate dehydrogenase (Iatsenko et al., 
2018). Both Duox and Nox are activated by increased calcium concentration through an 
EF hand domain that binds Ca2+. Duox activity is regulated by the Gaq-Phospholipase 
Cß-Ca2+ pathway (Ha et al., 2009a) while the Duox gene can be transcriptionally upreg-
ulated by the MEKK1-P38c-ATF2 pathway (Chakrabarti et al., 2014; Ha et al., 2009b).

In the gut, Nox has a signaling role in stimulating stem cell proliferation in re-
sponse to stress (Iatsenko et al., 2018; Jones et al., 2013; Patel et al., 2019). Duox has 
been implicated in multiple processes including (i) sclerotization of the peritrophic 
membrane in mosquitoes (Kumar et al., 2010); (ii) production of signaling ROS involved 
in visceral muscle contraction (Benguettat et al., 2018; Tleiss et al., 2024), wound heal-
ing (Chakrabarti and Visweswariah, 2020; Razzell et al., 2013), and Upd3 production 
in Malpighian tubules (Liu et al., 2023); (iii) production of microbicidal ROS (Ha et al., 
2005) (but see Westlake et al., 2024); and (iv) tracheal development (Jang et al., 2021; 
Kizhedathu et al., 2021). Null mutations in Duox are lethal; the dominant lethal recessive 
mutation DuoxCy causes the curly wing phenotype commonly used as a genetic marker 
(Hurd et al., 2015).

Consistent with a need to control ROS to prevent damage to the host through 
processes such as lipid peroxidation, the Drosophila genome encodes a range of enzymes 
involved in ROS detoxification: (i) three catalases that convert hydrogen peroxide to wa-
ter (the cytoplasmic Cat, the extracellular Immune-Regulated Catalase (IRC), and CatB 
which is likely localized to the peroxisome and mitochondria); (ii) three superoxide dis-
mutases that convert superoxide radicals to water and hydrogen peroxide (cytoplasmic 
SOD1, mitochondrial SOD2, extracellular SOD3); and (iii) several peroxidases (e.g., Pxd, 
Gtpx, Gpxl) which like catalases can convert hydrogen peroxide to water but also or-
ganic hydroperoxides such as peroxidated lipids (LOOH or LOOR) to L-OH (Lennicke 
and Cochemé, 2020). ROS can also be produced by the mitochondrial respiratory chain 
(mainly by Complex I, where O2

– which is transformed into H2O2 by SOD2) and during 
the melanization reaction (see Figure 15).
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Figure Box 9 ROS production by NADPH
A Production of reactive oxygen species (ROS) by Nox (NADPH oxidase) and Duox (dual oxidase). 
Both proteins have an intracellular NADPH-binding domain (NBD) and FAD-binding domain 
(FBD). Increased intracellular Ca2+ activates Nox and Duox through their EF hand domains. Upon 
activation, Nox and Duox bind intracellular NADPH and transfer electrons to extracellular O2, gen-
erating superoxide (O2

–). The extracellular peroxidase homology domain (PHD) of Duox promotes 
dismutation of O2

– to less reactive H2O2, and in the presence of chloride ions (Cl–), production of 
highly reactive hypochlorous acid (HOCl). Superoxide and hydrogen peroxide generated by NADPH 
oxidases can act extracellularly or cross cell membranes via chloride channels (red) and aquaporin 
channels (orange), respectively, and act intracellularly. B Major oxidation and reduction reactions 
of ROS. To detoxify ROS and mitigate damage to host proteins, superoxide dismutases (SOD) convert 
superoxide to hydrogen peroxide, while catalases convert hydrogen peroxide to water and oxygen. 
Damage to host proteins is promoted by Fenton reactions: In the presence of proteins that contain 
copper or iron ions (e.g., cytochrome c oxidases, prophenoloxidases), H2O2

 is further oxidized to 
produce highly reactive hydroxyl radicals (OH–) which can produce peroxidated lipids (LOOH) and 
damage host tissues. Glutathione peroxidases can reduce peroxidated lipids (LOH) and mitigate 
damage through oxidation of glutathione substrate (GSH to GSSG), which is then reduced in the 
presence of glutathione reductase and NADPH. Compiled with data from: (Fisher, 2009; Fukai and 
Ushio-Fukai, 2011; Kim and Lee, 2014). Figure created with BioRender.com, CC-BY-NC-ND.

https://www.BioRender.com
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Kim et al., 2020; Lee et al., 2015, 2013). Overall, the role of Duox in the gut and other 
tissues requires clarification, but recent studies indicate that Duox-dependent ROS plays 
a signaling role rather than a direct microbicidal role. 

Interestingly, symbiotic or pathogenic microbes not only impact intestinal stem 
cell proliferation but also differentiation, thus changing epithelial composition. All mi-
crobes stimulate the Imd/Relish pathway (NF-κB), but pathogens additionally generate 
stress and damage that stimulate the JAK-STAT pathway, leading to accumulation of 
enteroendocrine cells (Broderick et al., 2014; Jneid et al., 2023; Liu et al., 2022b). Higher 
numbers of enteroendocrine cells could contribute to microbe elimination by increasing 
peristalsis (Benguettat et al., 2018; Ye et al., 2021).

In addition to epithelial renewal, Drosophila intestinal epithelia undergo an evo-
lutionarily conserved thinning response when exposed to hemolysin, a pore-forming 
toxin secreted by Serratia marcescens. During this process, epithelial cells extrude most 
of their apical cytoplasm without lysing, then recover their initial thickness within a few 
hours (Figure 28C). This is a rapid and efficient response that may promote tolerance 
by expelling damaged organelles and preventing transcellular bacterial transit to the he-
molymph, with pore-forming toxins serving as alarm signals (Lee et al., 2016; Socha et 
al., 2023). 

E.	 Systemic immune activation in response  
to oral infection

In mammals, invasive bacterial pathogens such as Shigella, Salmonella or Listeria pen-
etrate the intestinal epithelium and spread systemically (Ribet and Cossart, 2015). In 
Drosophila, the cuticle and peritrophic matrix that line the digestive tract are thought to 
provide an efficient physical barrier that restrict contact between pathogens and the gut 
epithelium. Although there is currently no direct demonstration of entomopathogenic 
bacteria gaining access to the cytoplasm of the Drosophila intestinal epithelium, the Ser-
ratia marcescens strain Db11 (Flyg et al., 1980) can efficiently cross the Drosophila intes-
tinal barrier to reach the hemolymph (Lee et al., 2016; Nehme et al., 2007). Currently, we 
have little histological information on how and where peptidoglycan and S. marcescens 
cross the digestive tract barrier. While S. marcescens is highly pathogenic upon systemic 
injection and triggers an antibacterial response, infection with this same bacterium via 
an oral route has reduced pathogenicity and fails to trigger an immune response, despite 
bacteria entering the hemolymph (Kocks et al., 2005; Nehme et al., 2007). The observa-
tion that S. marcescens infection is less pathogenic upon oral infection is consistent with 
the recent observation that this bacterium can switch from a pathogenic to commensal 
strategy upon ingestion by the fly (Wang et al., 2024). Circulating plasmatocytes play an 
important role in control of S. marcescens that enter the hemolymph via the gut. Bacteria 
infiltrate the hemolymph in domino mutant larvae lacking hemocytes, indicating that 
the cellular response is required to eliminate bacteria that opportunistically cross the gut 
barrier (Braun et al., 1998).

Interestingly, bacteria such as P. carotovorum Ecc15 and P. entomophila can trig-
ger a strong systemic immune response in Drosophila after oral infection, although they 
appear to be confined to the intestine (Basset et al., 2000; Vodovar et al., 2005). This 
is likely mediated by the translocation of small peptidoglycan fragments from the gut 
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lumen to the hemolymph. This notion is supported by the observation that (i) inges-
tion of monomeric peptidoglycan can stimulate a strong systemic immune response in 
PGRP-LB deficient flies that lack the ability to degrade and reduce immunogenicity of 
peptidoglycan (Charroux et al., 2018; Charroux and Royet, 2022; Paredes et al., 2011; 
Zaidman-Rémy et al., 2006), and (ii) that this response dependent on the PGRP-LCx/P-
GRP-LCa heterodimer that senses monomeric peptidoglycan (Neyen et al., 2012). One 
study alternatively points to a key role of nitric oxide (NO) as a signaling molecule in gut 
to fat body signaling (Foley and O’Farrell, 2003), but the effect of NO might be indirect 
(Westlake et al., 2024). Another study proposed that activation of Imd signaling in the 
gut, either genetically or by pathogenic infection, promotes the hemocyte-mediated con-
version of hemolymph sugars to polyols. Accumulated polyols in the hemolymph then 
activate fat body Imd signaling through upregulation of Mmp2, which cleaves the PGRP-
LC ectodomain at the surface of fat body cells (Yang et al., 2019) (see Box 4). Hemocytes 
are also essential for gut-to-fat body signaling in larvae following Ecc15 ingestion (Basset 
et al., 2000; Charroux and Royet, 2009). Gut regions are associated with adherent hemo-
cyte populations, which may be resident, such as those adhering to the larval proven-
triculus (Zaidman-Rémy et al., 2012) or induced to attach upon oral infection (Ayyaz et 
al., 2015). These may play a signaling role and help co-ordinate a systemic response to 
gut infection. Oral infection with Ecc15 also activates the Imd pathway in Malpighian 
tubule cells through PGRP-LE sensing, which impairs their filtration function and leads 
to a bloating phenotype caused by fluid accumulation and fat body wasting (Zugasti et 
al., 2020).

F.	 Regulation of microbiota load in the gut
The microbiota promote gut homeostasis by stimulating basal epithelial renewal, pro-
moting differentiation of stem cells to enterocytes rather than enteroendocrine cells, and 
by inducing a low level of Imd pathway activity (Broderick et al., 2014; Buchon et al., 
2009; Liu et al., 2022b). Microbiota load is regulated by the same defense mechanisms 
that combat pathogens. Copper cell region acidity and AMPs limit microbiota load, 
which is critical in old flies that have higher bacterial counts (Buchon et al., 2009; Li et 
al., 2016; Marra et al., 2021a; Overend et al., 2016). Peristalsis also gradually eliminates 
most gut microbes, except for bacteria resident in the proventriculus niche of adults 
(Dodge et al., 2023; Pais et al., 2018).

Several additional mechanisms help to maintain the microbiota while prevent-
ing immune activation (Bosco-Drayon et al., 2012; Charroux et al., 2018; Paredes et al., 
2011). First, regional expression of PGRP-LC and PGRP-LE receptors likely contributes 
to differential expression of negative regulators of Imd, compartmentalizing immune 
activation. Activation of the Imd pathway via PGRP-LC mediates the microbicidal re-
sponse in the anterior gut, while activation via PGRP-LE creates a protective zone for 
bacteria in the posterior midgut18 (Bosco-Drayon et al., 2012; Charroux et al., 2018; Guo 
et al., 2014; Neyen et al., 2012) (Figure 28A). Second, regional transcription factors such 
as Caudal limit expression of AMPs and favor expression of negative regulators in the 

18	 Similarly, in the plant pest fruit fly Bactrocera, expression of antimicrobial peptides through PGRP-
LC in the anterior gut blocks pathogen entry, while expression of negative regulators in distal parts of the gut 
define a zone that favors establishment of symbiotic bacteria (Yao et al., 2022).
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posterior part of the gut creating an environment more favorable to the microbiota (Choi 
et al., 2008; Ryu et al., 2004; Ryu et al., 2008). Third, symbiotic bacteria tend to stimulate 
low Imd pathway activity due to their growth characteristics. Peptidoglycan fragments 
that activate the Imd pathway are released upon bacterial cell division, and are pro-
duced more quickly by fast-growing pathogens than established microbiota members 
(Arias-Rojas et al., 2023; Attieh et al., 2020; Zaidman-Rémy et al., 2006). Fourth, some 
microbiota members such as L. plantarum have cell walls with a thick peptidoglycan 
layer and teichoic acid modifications that protect them from antimicrobial peptide ac-
tivity and increase persistence in the gut (Arias-Rojas et al., 2023; Attieh et al., 2019; 
Zaidman-Rémy et al., 2006).

Interestingly, chronic Imd pathway activation tends to select for AMP-resistant 
pathobionts, leading to dysbiosis and further immune activation (Aalto et al., 2019; 
Kosakamoto et al., 2020; Ryu et al., 2008). In contrast, suppression of the Imd pathway 
tends to increase microbiota load upon aging, leading to higher rates of epithelial renew-
al and reduced lifespan (Buchon et al., 2013a, 2009). Thus, multiple mechanisms balance 
the level of Imd pathway activation in the gut.

An open question is whether Drosophila can shape its microbial environment by 
seeding antimicrobial peptides into its surroundings through salivary gland secretions or 
defecation of AMPs produced in the gut. External digestion through the release of amy-
lases has been proposed in other arthropods and Drosophila (Miguel-Aliaga et al., 2018), 
and antimicrobials or lysozymes could be similarly expelled in fly species that feed on 
bacteria, either to shape the external microbiome, or to predigest food bacteria.

G.	 Local immune responses in other tissues
Similar to its role in the gut, the Imd pathway is the primary regulator of antimicrobial 
defense in other epithelia (Tzou et al., 2000). For example, the tracheae have an intact 
Imd pathway that responds to natural infection by expressing AMPs and Tsf1 (Gendrin 
et al., 2013; Wagner et al., 2008). The immune transcriptome of the trachea is otherwise 
less complex than that of the gut, as it is composed of a simple epithelium and does not 
undergo epithelial renewal (Bossen et al., 2023; Gendrin et al., 2013; Wagner et al., 2009). 
Tracheal infection instead induces genes involved in the stress response and oxidore-
duction and suppresses a set of chitin binding proteins (e.g., Twdl), suggesting that the 
chitinous tracheal intima is remodeled following infection. These results show that Imd 
activation in various epithelia induces sets of core and tissue-specific transcriptional re-
sponses.

In contrast, the Toll pathway is usually not involved in local epithelial immunity, 
likely because its intricate extracellular signaling cascade cannot function in lumenal 
fluids as it does in hemolymph (but see (Bahuguna et al., 2022)). Antimicrobial pep-
tide genes such as Drosomycin are also expressed constitutively in some tissues (e.g., 
female spermathecae, salivary gland) independent of the Toll and Imd pathways but 
under the control of developmental transcription factors such as the POU transcription 
factor Drifter for reproductive organs and Caudal for salivary glands (Ferrandon et al., 
1998; Junell et al., 2010; Ryu et al., 2004; Tzou et al., 2000) (see The genitalia as an im-
mune tissue and infection route, page 121). Melanization is also operational in some 
epithelia, such as the gut and tracheae. Two serpins, Spn28D and Spn77B, specifically 
regulate melanization in the trachea, although the source of PPO for these reactions is 
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unclear (Scherfer et al., 2008; Tang et al., 2008). Interestingly, Spn77B deficient larvae 
with melanized tracheae also induce the Toll pathway at a low level in the fat body, likely 
through Psh.

Strikingly, many of the proteins contributing to the first line of defense during 
metamorphosis are provisioned by massive apocrine secretion by the larval salivary 
glands, which express complete immune pathways (Beňová-Liszeková et al., 2021; Nan-
dy et al., 2018). Many organs, including the salivary gland and Malpighian tubules, ex-
press antimicrobial peptides and future research may reveal important roles for these 
organs in host defense. 





11
Sex and immunity

Sexual intercourse is a major source of infection. Thus, potent and specialized host de-
fense mechanisms exist in sexual organs of male and female flies. Mating also has im-
portant consequences on the defense response in females by diverting resources to repro-
duction. Moreover, male and female flies face different evolutionary pressures, resulting 
in sexual dimorphisms in immunity. Thus, sex and mating status are important param-
eters to take into consideration when considering the fly immune system (Belmonte et 
al., 2020; Schwenke et al., 2016).

A.	 The genitalia as an immune tissue  
and infection route

Like other epithelia, reproductive tissues can be an entry point for infection. Copulation 
in D. melanogaster invariably results in wounding of the intima of the female genitals 
by the male aedeagus (Kamimura, 2010; Mattei et al., 2015), providing a direct route 
through which systemic infection and mortality may occur (Miest and Bloch-Qazi, 2008; 
Zhong et al., 2013). Melanization and wound healing programs are activated in the 
genital epithelium immediately following mating, likely to repair copulatory wounds 
(Delbare et al., 2023; Kamimura, 2010). In male flies, Gram-negative peptidoglycan or 
bacteria externally applied to the male genitals can activate local and systemic immune 
responses, and can establish infections through this route in immunocompromised flies 
(Gendrin et al., 2009). Thus the genitals, like other Drosophila epithelia, express a variety 
of AMPs to protect tissues in contact with the external environment and limit pathogen 
entry (Ferrandon et al., 1998; Tzou et al., 2000; Wagner et al., 2008). Much of the consti-
tutive expression of AMPs in the reproductive tract is independent of Imd, and instead 
controlled by other systems including the POU/Oct factor Dfr/Vvl, and the transcription 
factor Caudal (Junell et al., 2010; Ryu et al., 2004; Tzou et al., 2000). 

B.	 The local immune response to mating
Mating induces a host of immediate transcriptional and translational responses in the 
female reproductive tract, including upregulation of proteins involved in cytoskeletal 
organization, cell migration, and tissue morphogenesis. This drives the extensive mor-
phological and physiological remodeling of the reproductive tract to prepare for egg pro-
duction that occurs post-mating, and may also contribute to healing of wounds inflicted 
during mating (Delbare et al., 2023; Mattei et al., 2015) (Figure 29). Mating also initi-
ates mild transient upregulation of immune genes including AMPs and serine proteases 
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both locally in the genital epithelia and reproductive organs, and in the abdominal fat 
body of female flies (Fricke et al., 2020; Innocenti and Morrow, 2009; Mack et al., 2006; 
McDonough-Goldstein et al., 2021; McGraw et al., 2004). Transient immune activation 
in the genital epithelia and fat body following mating are dependent on Sex Peptide 
(Domanitskaya et al., 2007; Kapelnikov et al., 2008; Peng et al., 2005). Indeed, ectopic 
expression of Sex Peptide in the female fat body is sufficient to induce a significant ex-
pression of AMP genes via the Toll and Imd pathways (Peng et al., 2005), however the 
precise mechanism by which Sex Peptide activates immune pathways has not been fully 
characterized. As the hydroxyproline motif of Sex Peptide is required for this activity, it 
may activate immunity through chemical mimicry of sugar components of the bacterial 
cell wall (Domanitskaya et al., 2007). Introduced microbes also appear to play a role in 
mating-induced immune activation, as mating with axenic males leads to lower immune 
gene induction in females (Delbare et al., 2020). Males undergo very different and com-
paratively mild transcriptional changes in response to mating (Fowler et al., 2019; McK-
ean and Nunney, 2001; Rai et al., 2023; Winterhalter and Fedorka, 2009).

Sex Peptide is one of many male accessory gland proteins (Acps) incorporated 
into the seminal fluid of males that have a variety of effects on female physiology, such as 
temporarily decreasing female receptivity and attractiveness to other males in addition 
to altering metabolism and immunity (Avila et al., 2010; McGraw et al., 2008; Newell et 
al., 2020; Ram and Wolfner, 2007). Seminal fluid has antimicrobial properties thought to 
combat infection in the female following mating (Lung et al., 2001). One candidate for 
this activity is the ejaculatory duct specific protein Andropin. However, while Andropin 
has similarities to antibacterial peptides, it lacks comparable in vitro activity to Cecropin 
A (Samakovlis et al., 1991), and the peptides responsible for antimicrobial activity have 
not been conclusively identified. Male courtship song prior to mating may pre-emptively 
upregulate stress proteins in females such as Turandot M, which could improve female 
survival against sexually transmitted infections (Zhong et al., 2013). 

C.	 Consequences of mating on host defense
In addition to transient immune activation and remodeling of the reproductive tract, 
mating induces a permanent change in female fly metabolism linked to reproduction 
and biogenesis (Gioti et al., 2012; Gordon et al., 2022; Innocenti and Morrow, 2009; 
Kapelnikov et al., 2008), which results in persistent immune suppression and decreased 
resistance to a variety of infections (Fedorka et al., 2007; Gordon et al., 2022; Short and 
Lazzaro, 2010). Sex Peptide is retained in the female genitals and has persistent activity, 
increasing production of Juvenile Hormone (JH) which suppresses ecdysone-mediated 
potentiation of immunity (Flatt et al., 2008; Schwenke and Lazzaro, 2017; Zhang and 
Palli, 2009). Although antimicrobial peptide (AMP) gene transcription in mated females 
in response to infection is only mildly suppressed or delayed if at all (Flatt and Kawecki, 
2007; Gordon et al., 2022; Wigby et al., 2008), transcription may not accurately reflect 
immune protein production due to post-transcriptional regulation (Lauwers et al., 2009; 
Vasudevan et al., 2017; Wei et al., 2009) and metabolic limitations (see Metabolic ad-
aptation associated with systemic antimicrobial responses, page  69). A recent paper 
showed that immune activation in mated females overloads translational demand on 
the fat body, which is responsible for both reproductive and immune protein production. 
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This causes endoplasmic reticulum (ER) stress that reduces effector translation and ef-
ficiency of the immune response (Gupta et al., 2022). Reciprocally, fecundity is reduced 
with increasing immune activation through detection of peptidoglycan by octopaminer-
gic neurons in the brain (Kurz et al., 2017), indicating that synthesis of AMPs incurs a 
reproductive cost (Nystrand and Dowling, 2020; Schwenke et al., 2016). These results 
show that there is a physiological trade-off in females between egg production and im-
mune defense that may affect survival in a pathogen-dependent manner, depending on 
the metabolic and immune resources needed to resist and tolerate specific infections. 
Due to the interaction with metabolism, female survival to certain pathogens following 
mating may be highly dependent on diet (Rai et al., 2023).

Figure 29 The post-mating response in female flies
A Summary of changes in female flies following first mating. Many post-mating changes are in-
duced by male accessory gland proteins (Acps) such as Sex Peptide introduced during mating 
(Avila et al., 2011). B Mating flies, photo credit Francisco Romero Ferrero, via Wikimedia Com-
mons. C Following mating, more fat body resources are allocated to egg production, leaving fewer 
resources for production of immune proteins such as AMPs. Figure created with BioRender.com, 
CC-BY-NC-ND.

https://www.BioRender.com
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D.	 Sexual dimorphism and immunity in Drosophila
Sexual dimorphisms arise from differences in natural selection imposed on males and 
females, notably in regard to reproduction. The nature and significance of sex differ-
ences in Drosophila immunity has not yet been fully explored, though many observa-
tions point to their existence. Differences in the immune response and susceptibility to 
pathogens based on sex are, however, widely present across animals. Recent studies in 
Drosophila have highlighted that biological sex influences Drosophila host defense in 
different ways, although only a few broad generalizations can be made given the current 
state of research (e.g., “males are more susceptible than females to pathogen X”), which is 
reviewed extensively by (Belmonte et al., 2020). Importantly, this is not just a question 
of sex, as the mating status is an important parameter (see Consequences of mating, 
page 122). The female fat body provisions energy both for oogenesis and for induced 
immune responses. As a consequence, mating status has a marked effect on survival in 
females (Camus et al., 2018; Fedorka et al., 2007). Experimental inhibition of translation 
in the fat body prior to mating improves female survival upon infection relative to unin-
hibited controls when translation is restored. This suggests that the metabolic needs of 
female homeostasis and immunity are at odds (Gupta et al., 2022). Sexual dimorphism 
is also expected in the gut immune response as the female gut is more plastic with high-
er basal and induced levels of stem cell activity (Hudry et al., 2016; Regan et al., 2016). 
Other tissues, most obviously the ovaries and testes, also contribute to differential gene 
expression of immune genes between male and female flies. Furthermore, adult females 
harbor higher hemocyte numbers (Duneau et al., 2017b; Kleinhesselink et al., 2011). A 
major cause of sexual dimorphism results from diet*sex interactions, which could also 
partially explain some of the inter-lab variation in the field. For instance, dietary protein 
content has a greater effect on fitness in females compared to males (Camus et al., 2019; 
Regan et al., 2016), and protein in lab diets is derived from brewer’s yeast, purchased 
from regional suppliers that likely have yeast strain differences (Sannino and Dobson, 
2023). Triglyceride metabolism further relies on genes with sexually dimorphic expres-
sion (Wat et al., 2020), which could explain some dimorphisms in baseline immune state. 

It is common to observe mild differences in susceptibility between males and fe-
males, but the multiple influences of sex on various parameters makes the mechanistic 
interpretation of these differences difficult. Moreover, few studies have been systemat-
ically designed to test sexual dimorphisms in infection susceptibility, such that many 
inferences are made based on post-hoc observations, and inter-study methodological 
differences are not controlled for (see Belmonte et al., 2020). In some cases, opposite 
trends have been reported even using the same pathogen (e.g., (Vincent and Sharp, 2014) 
and (Chowdhury et al., 2019), which differed in mating status). Females are reported 
to suffer increased mortality against P. rettgeri, due to activation of the Toll-SP pathway 
(Duneau et al., 2017b), which is triggered by cleavage of the serine protease Persephone. 
Flies with mutations affecting Toll at or downstream of Persephone lack this sexually 
dimorphic response to P. rettgeri. Persephone itself may be activated by bacterial prote-
ases secreted by P. rettgeri, which is consistent with recent findings on this protein (Issa 
et al., 2018; Nakano et al., 2023). Other studies using different genetic backgrounds have 
found mixed results for a sexual dimorphism following P. rettgeri infection (Mullinax 
et al., 2023; Shit et al., 2022), collectively suggesting this result relies partly on lab ef-
fects, and partly on genetics. Genetic background itself interacts with mating to impact 



	 11  Sex and immunity	 125

post-infection bacterial load (Short and Lazzaro, 2010). A male-specific erect wing re-
sponse was also observed in Baramicin A-deficient males, but less so in females (Hanson 
et al., 2021), although the mechanism behind this remains unclear. The genetic tools 
available in Drosophila, notably the ability to change the phenotypic sex of tissues (Cline 
and Meyer, 1996; Hudry et al., 2016; Regan et al., 2022) make Drosophila a suitable mod-
el to analyze sexual dimorphism in immunity. However, these studies require careful 
consideration of the route of infection, nature of pathogens, genetic background, and 
nutritional conditions, which have complex interactions with biological sex. Systematic 
study will further elucidate the underlying causes of sexually dimorphic responses after 
infection.
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Immunity  

in non-infectious disease

Immune system function is not limited to the control of infectious agents. It also plays 
an important role in maintaining tissue homeostasis, removing dead cells and limiting 
tumor growth (Eberl and Pradeu, 2018). Dysregulation of the immune system upon 
aging or in other contexts is now linked to many diseases in both Drosophila and hu-
mans. Thus, current research is trending towards analyzing the roles of immune system 
components in processes beyond traditional host defense such as autoimmunity, cancer, 
and neurodegeneration, with parallels to human diseases (Yamaguchi, 2018). We briefly 
highlight some of these findings here. 

A.	 Autoimmunity
Constitutive activation of immune programs is deleterious, causing lethality or short-
ened life span (De Gregorio et al., 2002a; Garschall and Flatt, 2018; Hanratty and Dearolf, 
1993; Lemaitre et al., 1995a; Levashina, 1999; Paredes et al., 2011). The exact causes of 
these immunopathologies are not known, although toxic apoptosis, ROS exposure, met-
abolic wasting and dysbiosis have been invoked (Wang et al., 2023).

One of the largest phenotypic classes of mutations in Drosophila are ‘melanotic 
tumor’ mutants, which have black melanized bodies free-floating within the larval body 
cavity or attached to internal organs (Minakhina and Steward, 2006; Rizki, 1960; Watson 
et al., 1992) (Figure 30). Melanotic tumors are not necessarily cancerous; rather, they 
represent an auto-immune reaction that typically involves encapsulation of self-tissues 
by lamellocytes at the larval stage (see Encapsulation, page  100). Genotypes causing 
melanotic tumors can be divided into two classes (Avet-Rochex et al., 2010; Watson et al., 
1991): Class I have normal cellular immune systems but abnormal self-recognition (often 
due to mutations in endocytic pathways or extracellular matrix components), while Class 
II have an overactive immune system (mutations activating Toll, JAK-STAT) defined by 
ectopic activation of hemocytes and an abnormal response to normal tissue (Minakhi-
na and Steward, 2006). Like autoimmune diseases, the frequency of these non-invasive 
pseudo-tumors is influenced by genetic background and environmental conditions (e.g., 
Kim and Choe, 2014; Mortimer et al., 2021). Melanotic tumors can be induced by simul-
taneous disruption of the basement membrane and cell integrity or apicobasal polarity 
(Kim and Choe, 2014; Rizki and Rizki, 1983), or by necrotic cell death (Park et al., 2020). 
Constitutive activation of Toll in the fat body (e.g., using gain of function alleles such as 
Tl10b) is also sufficient to induce lamellocyte differentiation and a melanotic tumor phe-
notype (Schmid et al., 2014). As Tl10b larvae have abnormal fat body cells (Gerttula et al., 
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Figure 30 Autoimmunity in Drosophila: Melanotic tumors 
A Melanotic tumor around the larval fat body in a TuSz1 mutant background. This line has (i) a 
mutation in the gene encoding the JAK-STAT kinase Hop causing precocious hemocyte differenti-
ation and (ii) a mutation in the GCS1 gene which disrupts N-glycosylation of extracellular matrix 
proteins covering the fat body that identify it as self-tissue (Mortimer et al., 2021) (Photo Nathan 
Mortimer and Todd Schlenke). B, C The mutation Tl10b causing the constitutive activation of the 
Toll pathway leads to melanotic tumor formation (Gerttula et al., 1988; Lemaitre et al., 1995a). 
B Lamellocytes (white arrowheads) are flat cells much larger than plasmatocytes (black arrow-
heads) that adhere in layers to non-self material, forming a melanized capsule (Photo credit, B. 
Lemaitre CC). C Melanotic tumor mutants may have melanized lamellocyte-encapsulated bodies 
free-floating in the larval body cavity; these are usually pieces of loosely adherent tissue that have 
detached from organs such as the fat body (Photo credit, B. Lemaitre CC). 

1988; Lemaitre et al., 1995a), this suggests that simultaneous activation of Toll and the 
presence of abnormal tissues is sufficient to induce encapsulation of host tissues. These 
studies suggest that patrolling hemocytes identify basement membrane as self and only 
react to certain cues perceived as absence of self or danger signals, such as necrosis or 
basement membrane breach. Loss of membrane N-glycosylation leads to melanotic tu-
mor formation only in the presence of activated hemocytes (Mortimer et al., 2021), indi-
cating that both aberrant tissues and overactive hemocytes contribute to this phenotype. 
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Increased topology of the surface of the fat body due to either inhibition of en-
docytosis or greatly increased exocytosis (overactivation of protein production) can also 
trap extracellular matrix components and other proteins at the surface of the fat body, 
causing fibrotic accumulations that chronically activate the humoral and cellular im-
mune responses (Csordás et al., 2020; Zang et al., 2015).

B.	 Immunity in tumor control
Several neoplastic tumor models are available in Drosophila, combining mutations dis-
rupting epithelial polarity (Dlg, Scrib) and over activating proto-oncogenes (Src, Ras). 
These models provide a platform to study cancer progression and interactions between 
tumors and their environment (Bilder et al., 2021; Enomoto et al., 2018). Similar to 
wounds, many tumors induce ROS through Duox, secrete Upd3, attract hemocytes and 
stimulate the Toll pathway. Both cellular and humoral immune responses as well as the 
microbiota affect tumor growth (Bangi et al., 2012; Parisi et al., 2014; Zhou and Boutros, 
2020).

Hemocytes and JNK signaling may either promote or restrict tumor growth, de-
pending on tumor characteristics. Hemocytes bind to disrupted basement membrane 
of tumors and express TNF/Eiger, activating JNK in tumor cells and causing apoptosis 
(e.g., Chen et al., 2012; Pérez et al., 2017). In an allograft Notch-induced neural stem 
cell model, hemocytes bind and engulf tumor cells to restrict growth in a process that 
requires NimC1, Draper, and Croquemort but not Eater. In addition to their protective 
role, it was suggested that hemocytes may also increase host morbidity by producing 
damaging extracellular reactive oxygen species (Voutyraki et al., 2023). In tumors where 
apoptosis is inhibited (e.g., >RasV12;scrib-/-), the high levels of JNK signaling induced 
by hemocyte-derived Eiger through the TNF receptor Grindelwald increase metastat-
ic growth through overexpression of the matrix metalloproteinase Mmp1. High levels 
of ROS in these tumors attract more hemocytes, leading to amplification of the signal 
and exacerbating tumor growth (Andersen et al., 2015; Diwanji and Bergmann, 2020; 
Fogarty et al., 2016). Similarly, recruitment of hemocytes by senescent cells in the larval 
hindgut can promote tumorigenesis through non-autonomous activation of JNK signal-
ing (Datta and Bangi, 2024). Recent studies indicate that Grindelwald mediates the sys-
temic and apoptotic functions of Eiger, whereas the alternate TNF receptor Wengen has 
roles mainly in the central nervous system (Palmerini et al., 2021).

In vitro studies have shown that some antimicrobial peptides (AMPs) have anti-
tumoral activity, making them the current focus of translational studies aiming to com-
bine AMP treatment with cellular antitumor therapy (Jafari et al., 2022). It is not yet 
clear whether endogenous AMPs can have similar activity in vivo, and which mecha-
nisms allow these molecules to target and attack aberrant host cells. Recent studies have 
highlighted the antitumoral effect of Drosophila AMPs in two cancer models caused by 
mutations disrupting the hematopoietic organ (e.g., Mxc) and imaginal discs (e.g., dlg) 
(Araki et al., 2019; Kinoshita et al., 2022; Parvy et al., 2019). These studies revealed that 
in vivo, some AMPs have cytotoxic effects that selectively enhance apoptosis of tumor 
cells. Parvy et al. showed that the cationic AMP Defensin is secreted from the trachea 
and fat body and binds dlg imaginal disc tumor cells due to their increased exposure of 
phosphatidylserine, a negatively charged phospholipid (Parvy et al., 2019). Phosphati-
dylserine exposure is increased in tumor cells by hemocytes, which bind to tumors and 
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secrete TNF/Eiger, activating JNK signaling. These studies provided the first in vivo ex-
amples of endogenous AMPs acting as anti-cancer agents. AMPs can also have a protec-
tive effect: in a >Rasv12 salivary gland tumor model, expression of the AMP Drosomycin 
prevents tissue damage by suppressing JNK pathway activity (Krautz et al., 2020). In a 
non-AMP example of immune interaction with tumors, overproduction of clotting fac-
tors (e.g., Fondue) in a fly ovarian tumor model causes lethal hypercoagulation (Hsi et 
al., 2023). Thus, various aspects of the immune system are engaged depending on the 
tumor model, which can have either pro- or anti-tumoral effects.

C.	 Immunity in neurodegeneration
In recent years, Drosophila has emerged as a powerful model to study neurodegener-
ation, and several models mimicking human diseases have been developed, including 
Alzheimer’s, Parkinson’s, and Huntington’s diseases (Dabool et al., 2019; Nainu et al., 
2019). Both humoral and cellular immune programs are critical for nervous system func-
tion and maintenance. Phagocytic glia play a major role in brain health, but must be 
tightly regulated (Kurant, 2011). Defective phagocytosis in the brain (e.g., Draper mu-
tants) leads to neurodegeneration through accumulation of debris (Draper et al., 2014; 
Elguero et al., 2023), while excessive phagocytosis can lead to abnormal neuronal cell 
death by phagoptosis19 (Hakim-Mishnaevski et al., 2019). Impaired autophagy leads to 
age-dependent neuronal loss, associated with overactivation of immunity (Shukla and 
Giniger, 2019).

The Imd pathway is induced in many neurodegenerative contexts and is suspect-
ed to play an active role in disease progression (Cao et al., 2013; Kounatidis et al., 2017; 
Li et al., 2018; Petersen et al., 2013, 2012). Mutations of the gene encoding the Imd tran-
scription factor Relish can rescue neurodegeneration in several genetic contexts (Dnr1, 
ATM, Cdk5α, Draper, etc.). AMPs may exhibit pro-neurodegenerative activities, possi-
bly by targeting negatively charged neurons, which may have naturally high phosphati-
dylserine exposure similar to the trachea (Cao et al., 2013; Hanson and Lemaitre, 2020) 
(Figure 21). Strikingly, loss of the AMP Metchnikowin protects against traumatic brain 
injury and amyotrophic lateral sclerosis-mediated neuronal loss (Lee et al., 2023; Swan-
son et al., 2020). The determinants of cause and effect, and their mechanisms of action, 
remain to be elucidated.

Neurodegeneration and brain dysfunctions have been associated with infection 
and inflammation in humans (Amor et al., 2014; Leblanc and Vorberg, 2022). As in mam-
mals, the Drosophila brain is protected from systemic infection by the blood-brain barri-
er, composed of the perineural and subperineural glial layers (Benmimoun et al., 2020; 
Desalvo et al., 2011). There is however a window at the pupal stage where activation of 
the Imd pathway in the glia or brain infection by group B Streptococcus can recruit plas-
matocytes into the central nervous system, across the blood brain barrier (Winkler et al., 
2021). Interestingly, infection with Enterococcus faecalis induces permeabilization of the 
blood brain barrier in adult flies, associated with higher JAK-STAT reporter activation 
and expansion of septate junction markers in subperineural glial cells (Kim et al., 2021b).

19	 Phagocytes play an important role in removal of apoptotic cells, a process called efferocytosis. How-
ever, phagocytes can also play an active role in the process by killing live target cells (Brown and Neher, 2012; 
Zohar-Fux et al., 2022). This phagocytosis-induced cell death is called phagoptosis. 
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Bidirectional interactions between the brain and the immune system are com-
plex and poorly understood. There is no doubt that similar to human disease contexts, 
cellular and humoral immune programs contribute to neurodegeneration in Drosophila. 
However, it is unclear whether immune programs are initiators of neurodegenerative 
diseases, or primarily respond to pre-existing disease states and exacerbate neurodegen-
erative phenotypes by causing collateral damage.





13
Behavioral immunity 

Like other insects, Drosophila uses its sensory system to detect pathogens and trigger 
various behaviors that prevent infection. These mechanisms include avoidance of patho-
gen-associated odors, spore removal by grooming, food uptake blockage, and sickness 
behaviors required for efficient health recovery. Thus, the Drosophila immune and ner-
vous systems cooperate to increase fitness and protect the next generation (Davis and 
Schlenke, 2022; Montanari and Royet, 2021). Neuronally controlled behaviors are com-
plex and likely of greater importance in survival to pathogens than is currently appreci-
ated, as this is a nascent branch of study. 

A.	 Avoidance and food uptake blockage in response  
to pathogenic microbes

Drosophila detect and adapt behavior in response to an array of volatile olfactory cues 
related to the microbial environment. Drosophila are attracted to odors from Saccharo-
myces cerevisiae and Lactobacillus plantarum symbionts, but are repelled by Acetobacter 
malorum (Venu et al., 2014). Metabolites produced by lactobacilli such as propionic 
and butyric acid are sensed by specific odorant receptors to stimulate appetite (Depe-
tris-Chauvin et al., 2017). In contrast Geosmin, a volatile associated with harmful fungi 
or bacteria, is a repellent sensed by odorant receptor Or56A (Stensmyr et al., 2012). Sim-
ilarly, a feces-derived phenol sensed by Or46A prevents Drosophila feeding or egg laying 
on potentially pathogenic bacteria (Mansourian et al., 2016). Beyond avoidance, infec-
tion by P. entomophila and P. carotovorum Ecc15 induces a food uptake blockage that 
likely limits infection (Chakrabarti et al., 2012; Keita et al., 2017). Surprisingly, infection 
by pathogens such as P. entomophila alters the odors emitted by flies, greatly increasing 
production of pheromones associated with courtship and aggregation. This response is 
expected to benefit the pathogen by attracting healthy flies and enhancing pathogen 
dispersal (Keesey et al., 2017).

Feeding and egg laying assays show that Drosophila have a strong aversive re-
sponse to the bacterial cell wall component LPS, dependent on the chemosensory cat-
ion channel TrpA1 in gustatory neurons (Keita et al., 2017; Soldano et al., 2016). In 
many studies using LPS, it is not clear whether LPS itself is the elicitor, or whether 
other contaminating microbial molecules induce the neuronal response. Of note, it 
is now well established that LPS provided by SIGMATM is contaminated with lipopep-
tides and DAP-type peptidoglycans, which produced confusing findings in earlier in-
nate immunity research (Kaneko et al., 2004). Toxic food consumption elicits complex 
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long-term post-ingestion behaviors that evoke disgust memory (Charroux et al., 2020; 
Kobler et al., 2020), while feeding on beneficial microbiota also modifies fly behaviors 
and sensory capacity (Fischer et al., 2017; Wong et al., 2017a).

B.	 Grooming as hygienic behavior
Grooming involves brushing the body and wings with the legs and cleaning the legs 
and the antenna with the mouthparts. Grooming is a very important hygienic behav-
ior in removing spores of entomopathogenic fungi (Yanagawa et al., 2014; Zhang et 
al., 2020b; Zhukovskaya et al., 2013). In addition to spores, grooming behavior can be 
triggered by various chemicals such as LPS from SIGMATM and quinine (Yanagawa et 
al., 2018, 2017, 2014). Multiple sensing modalities have been implicated in grooming 
including contact chemoreceptors, the olfactory system, and the Imd receptor PGRP-
LC in the case of Gram-negative bacteria (Yanagawa et al., 2018, 2017, 2014). A recent 
study has shown that the D. melanogaster chemosensory protein CheA75a recognizes 
the Metarhizium Mcdc9 CFEM membrane protein, a group of proteins that mediate 
spore-host attachment. Fungi that have lost Mcdc9 fail to stimulate grooming behav-
ior and kill flies more quickly (Shang et al., 2023). In this example that echoes effec-
tor-triggered immune mechanisms, a virulence factor that promotes spore attachment 
is now highjacked by the host to sense pathogens (Pradeu et al., 2024; Remick et al., 
2023; Stuart et al., 2013).

C.	 Reduction of egg laying upon infection
Infected insects display post-infection behaviors such as feeding on specific diets that 
stimulate host defense, thermoregulatory behaviors that promote resistance, reduction 
of egg laying (Babin et al., 2023; Kurz et al., 2017), and modulation of sleep and activity 
(Lee and Edery, 2008; Mallon et al., 2014; Shirasu-Hiza et al., 2007; Surendran et al., 
2017; Vale and Jardine, 2017; Vincent et al., 2022). Most of these disease-induced behav-
iors still require mechanistic characterization in Drosophila. Reduced egg laying follow-
ing infection has been well characterized in Drosophila; this mechanism may transiently 
shift host resources from reproduction to immunity (see Consequences of mating on im-
munity, page 122). This behavior is triggered by the sensing of peptidoglycan by PGRP-
LE in a subset of octopaminergic neurons in the central brain. This then prevents follic-
ular cell rupture, a step required for egg-laying (Kurz et al., 2017; Masuzzo et al., 2019). 
Strikingly, this study revealed that in neurons, immune pattern recognition receptors 
can directly sense infection and modify behavior. Thus, the nervous system can directly 
react to microbial cues. This finding echoes the recent observation that recognition of 
peptidoglycan by the pattern recognition receptor NOD2 in mouse neurons affects body 
temperature and appetite (Gabanyi et al., 2022). Of note, several short peptides (IM33, 
Nemuri, Diptericin B, GNPB3-like), some of which have demonstrated antimicrobial 
activity, have been linked to brain function, although their immune and/or neurological 
roles in the brain are not yet clear (Barajas-Azpeleta et al., 2018; Toda et al., 2019; Xu et 
al., 2023b)
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D.	 Behavioral immunity against parasitoid wasps
Parasitoids lay their eggs inside Drosophila larvae or pupae, which kill the host by con-
suming its tissues. Drosophila have an arsenal of behaviors to escape infestation by par-
asitoid wasps (Davis and Schlenke, 2022). Larvae roll to dislodge wasp ovipositors, a 
behavior that involves class IV nociceptive neurons (Hwang et al., 2007). Drosophila lar-
vae and adults avoid sites smelling of Leptopilina wasps through specific olfactory sen-
sory neurons: larvae sense the wasp odor iridomyrmecin, while adults detect actinidine 
and nepetalactol through the olfactory receptors Or49a and Or85f. Wasp odors can also 
prime progenitor hemocytes of the lymph gland to differentiate into lamellocytes. This 
involves the Or42a olfactory receptor, leading to production of extracellular GABA by 
projection neurons and the activation of the HIF/SIMA transcription factor in the lymph 
gland (Madhwal et al., 2020; Shim et al., 2013). Upregulation of the immune-associated 
peptide IBIN (Induced By INfection) is also observed in the optic lobes upon wasp sight-
ing. IBIN itself plays a role in the mating response triggered by wasp sighting, suggesting 
that immune-regulated genes may have a role in behavior (Ebrahim et al., 2021).

Strikingly, Drosophila can also exhibit parental behaviors to protect their progeny 
from wasp infection (Figure 31). Sight and olfaction of wasps reduce Drosophila female 
oviposition rate by inducing apoptosis in the ovaries, and promote egg deposition on 

Figure 31 Behavioral immunity: reduced egg laying upon wasp infestation
Drosophila females reduce egg laying in the presence of parasitoid wasps. This parental behavior 
driven by olfactory and visual cues is expected to reduce wasp infestation. Schema kindly provided 
by Todd Schlencke.
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ethanol rich substrates that are aversive to wasps (Kacsoh et al., 2013). Multimodal sen-
sory integration regulates these behaviors, which are ultimately mediated by NPF neu-
ropeptide signaling (Bozler et al., 2019). Anti-parasitoid behaviors display memory and 
can take place to a certain extent even after the wasp is removed (Kacsoh et al., 2015a, 
2015b). Thus, anti-wasp behavioral immunity involves higher order neuronal function, 
such as memory that involves the mushroom body. These studies collectively reveal that 
a significant number of Drosophila behaviors are devoted to deterring infections. 
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Evolution of the immune system

With hundreds of related species sequenced, access to population genetic and genomic 
resources, and genetic tools in D. melanogaster, Drosophila is a powerful model to study 
how the immune system evolves in response to selection by natural challenges (Kim et 
al., 2021a; Mackay et al., 2012; Sackton et al., 2007). The short life cycle of fruit flies fur-
ther enables experimental evolution approaches, with relatively easy tractability of both 
host and pathogen genetics.

A.	 Immune trade-offs with reproduction and other  
physiological functions

The purpose of an immune response is to preserve host fitness. Fitness is often defined 
in terms of reproductive success, which can encompass host survival for the purpose 
of later reproductive output, and can be extended to competitive capacity of offspring. 
This places a limit on immune readiness to instead prioritize growth, development, and 
reproductive output. Landmark studies identified a trade-off where increased resistance 
to wasps through higher investment in energetically-costly hemocytes slowed larval 
growth (Kraaijeveld et al., 2002; Kraaijeveld and Godfray, 1997). Indeed, excessive hemo-
cyte numbers have been shown to limit starvation resistance in larvae due to their high 
metabolic demands (Ramond et al., 2020b) (see The hemocytes are a central metabolic 
hub, page  104). Single cell RNA sequencing has also shown that evolved resistance 
against wasps is associated with constitutive upregulation of immune genes associated 
with increased differentiation of lamellocyte precursors, the cell type that encapsulates 
wasp eggs (Leitão et al., 2020). Such energy trade-offs become more readily apparent in 
nutrient-poor conditions. For instance, fecundity shows a negative correlation with re-
sistance to infection specifically in food-limited conditions (McKean et al., 2008). Trade-
offs in immune readiness also take place in immune-competent tissues that perform 
multiple physiological roles. As previously discussed (see Consequences of mating on 
immunity, page 122), the fat body is not only involved in the production of immune ef-
fectors, but also provisions yolk during oogenesis. The transcriptional programs of repro-
duction and homeostasis are at odds with the metabolic needs of immunity (Gupta et al., 
2022; Uttenweiler-Joseph et al., 1998). Therefore, female flies deploy resources towards 
fecundity that could otherwise be spent on improving immune readiness.
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B.	 Variation within species
There is striking variability in resistance of wild-type flies to different pathogenic infec-
tions (Bangham et al., 2008; Bou Sleiman et al., 2015; Lazzaro et al., 2004; Orr and Irving, 
1997). It therefore stands to reason that loci underlying resistance to infection are not 
fixed in the wild. The evolutionary processes that generate this variation include geo-
graphic (Hanson et al., 2019a) and seasonal selection (Behrman et al., 2018). Seasonal 
selection may rely on dynamic processes such as fluctuating pathogen presence, which 
drives frequency-dependent selection (balancing selection) (Chapman et al., 2019). This 
balancing effect maintains polymorphic alleles (Unckless and Lazzaro, 2016), which 
may have unique competence against certain pathogens. An alternate hypothesis is that 
alleles with unique competence against one pathogen might come at a cost to host fit-
ness, and so are selected against in times when pathogen presence is low (Perlmutter et 
al., 2024).

These studies highlight variation in genes evolving under natural selection. The 
consequences of that variation are readily seen, as many encode polymorphisms at loci 
with major effects. For instance, genetic variation in the edl gene determines resistance 
against the parasitoid wasp Leptopilina boulardi (Hita et al., 2006, 1999), and recurrent 
loss of lectin-24a expression leads to increased susceptibility to wasp parasitization 
(Arunkumar et al., 2023). Multiple loci have large impacts on resistance against differ-
ent viral infections (see Restriction factors, page  31). More recently, polymorphisms 
and gain/loss of AMPs have been described that can explain variability in resistance 
of wild flies to fungal or bacterial infections. A segregating duplication in the antifun-
gal gene Baramicin A is observed in a notable proportion of the Drosophila Genomic 
Resource Panel (DGRP) fly stocks, which increases gene expression and presumably 
provides a protective effect (Hanson et al., 2021; Hanson and Lemaitre, 2022). Natural 
polymorphisms in the Buletin and Metchnikowin peptides are similarly associated with 
differences in survival upon infection (Hanson et al., 2022; Perlmutter et al., 2024). The 
retention or loss of Diptericin genes throughout the Drosophilidae lineage is closely as-
sociated with geography and host ecology. Naturally-occurring variation in these genes 
greatly affects defense against ecologically relevant Providencia and Acetobacter bacteria 
(Hanson et al., 2023; Unckless et al., 2016). In these studies, a DptA S69R allele provides 
protection against P. rettgeri, while naturally-occurring presence or absence of DptB de-
termines susceptibility to Acetobacter systemic infection both within and across species. 
Pressures maintaining the alternate allele are not known, though it has been suggested 
that DptA S69R could interact with the host microbiome (Mullinax et al., 2023). For now, 
the selective forces maintaining polymorphisms remain poorly understood, but recent 
studies identify many examples that await characterization.

C.	 Variation between species
The Drosophila innate immune system is built on ancient and broadly-conserved signal-
ing pathways (e.g., JAK-STAT, Toll/Imd NF-κB, cGAS-STING, JNK, MAPK) and immune 
effector mechanisms (e.g., AMPs, phagocytosis). These signaling pathways, and process-
es such as phagocytosis, are conserved in mammals (Buchmann, 2014; Flajnik and Du 
Pasquier, 2004; Leulier and Lemaitre, 2008; Magor and Magor, 2001), and the core genes 
of these pathways are very well-conserved across Drosophila species. However, some 



	 14  Evolution of the immune system	 139

mechanisms of realized immunity are more lineage-restricted, such as the melanization 
of arthropods (Palmer and Jiggins, 2015) or antiviral defense mechanisms of Drosophila 
(Hédelin et al., 2024; Imler et al., 2024). 

This variation stems from gene duplication and loss events (e.g. (Palmer and Jig-
gins, 2015; Ruzzante et al., 2022; Salazar-Jaramillo et al., 2014)), and from positive selec-
tion (elevated rate of non-synonymous mutations) shaping the immune response. In-
deed, immune genes evolve more rapidly than other genes in the genome (Kosiol et al., 
2008; Sackton et al., 2007; Shultz and Sackton, 2019). In fruit flies, RNAi, receptor, and 
signaling genes are often seen as “hotspots” of evolution (Hill et al., 2019; Van Mierlo et 
al., 2014). For example, multiple approaches have found selection on the Relish cleavage 
complex and the Imd receptor PGRP-LC (Begun and Whitley, 2000; Jiggins and Kim, 
2007; Obbard et al., 2009; Sackton et al., 2007). Contrary to vertebrates (Hollox and Ar-
mour, 2008; Lynn et al., 2004; Semple et al., 2003; Tennessen, 2005), early studies failed 
to recover signals of positive selection in Drosophila effectors (Lazzaro, 2008), despite 
evidence of AMP polymorphisms in natural populations (Lazzaro, 2003; Unckless and 
Lazzaro, 2016). Perhaps owing to advances in genomic resources and analytical tech-
niques, many examples of positive selection in Drosophila AMPs are now well-described 
(Chapman et al., 2019; Early et al., 2017; Hanson et al., 2016; Hill et al., 2019; Unckless 
and Lazzaro, 2016). 

D.	 Immune novelty through gene duplication and loss
Immune genes experience frequent gene duplication (copy number variation), which 
gives rise to extant multi-gene families that are often arranged in tandem in the genome. 
Immune genes are frequently found on chromosome 2R (especially AMP families). 
Strikingly, unrelated genes with functional relationships are often clustered together at 
a locus (e.g., Toll, spz, grass, and pelle together on the tip of chromosome 3R, Cactus 
and Dorsal/Dif on the 2nd chromosome) (Figure 32). This clustering could reflect an 
evolutionarily-favored state, for instance by allowing efficient chromatin unpacking for 
transcriptional co-regulation. Indeed, immune inducible genes that are not related are 
often clustered (De Gregorio et al., 2002b; Spellman and Rubin, 2002).

Gene copy number variation is particularly common among immune receptors 
and effectors (Clemmons et al., 2015; Ekengren and Hultmark, 2001; Gao Band Zhu, 
2016; Hedengren et al., 2000; Quesada et al., 2005). Such duplications can allow parti-
tioning of ancestral functions to daughter genes (i.e. subfunctionalization) (Figure 33). 
For instance, the transcription factor Dorsal regulates dorsoventral embryonic pattern-
ing, but a duplication of dorsal in the Drosophila ancestor gave rise to Dorsal-related 
immunity factor (Dif), which is the primary Toll NF-κB transcription factor in adult flies 
during the systemic immune response (Mayo, 2008; Zhou et al., 2015). Duplication of 
immune effectors may alternately provide the genome with raw material to perform 
novel roles. Drosophila PPO3 stems from a duplication of PPO2 and is expressed only in 
lamellocytes that defend against parasites (Binggeli et al., 2014; Dudzic et al., 2015). Both 
the PPO3 gene and lamellocytes have been secondarily lost in Drosophila sechellia, a spe-
cies adapted to feed on morinda fruit that is toxic to would-be parasites (Salazar-Jaramil-
lo et al., 2014; Salazar-Jaramillo and Wertheim, 2021). Although lamellocytes are unique 
to the Melanogaster group, other species have their own specialized cells that perform 
a similar function (nematocytes, multinucleated giant hemocytes) (Kacsoh et al., 2014; 
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Figure 33 Routes for evolution of immune novelty by gene duplication
Two start points are given. In Start 1, a gene with relatively singular function undergoes dupli-
cation. Following duplication, three outcomes are possible. a No important additional change 
(Hanson and Lemaitre, 2022; Ramos-Onsins and Aguadé, 1998): this outcome likely results in 
increased transcriptional potential of the gene family, but does not generate novel function for 
the gene family itself. b Neofunctionalization, where one gene copy takes on a novel function, 
can arise if the gene provides a good scaffold to build on for addressing a pre-existing evolution-
ary pressure (Dudzic et al., 2015; Hanson et al., 2023; Salazar-Jaramillo et al., 2014). c Pseudog-
enization can occur through genetic drift or evolutionary selection, wherein the extra daughter 
gene either offers no selective advantage, or is dead-on-arrival, or the host niche shifts, creating a 
context where the net effect of the gene becomes deleterious (Hanson et al., 2023; Ramos-Onsins 
and Aguadé, 1998). In Start 2, a gene with multiple roles undergoes duplication, which can lead 
to: d Subfunctionalization, wherein the two genes specialize near-completely for alternate roles 
(Manfruelli et al., 1999; Meng et al., 1999; Rutschmann et al., 2000a); or e partial subfunctional-
ization, where both daughter genes evolve to become specialized for alternate roles of the parent 
gene, but retain somewhat overlapping function (Dudzic et al., 2019; Nakano et al., 2023; Shan et 
al., 2023). f Pseudogenization can also occur under purifying selection, where gene copy number 
is tightly regulated and genomic duplications are quickly purged. Such instances of gene duplica-
tion likely occur but are unlikely to be retained in the genomes of extant species.

Márkus et al., 2015), emphasizing how a common need can be addressed by parallels 
of evolution. The antimicrobial peptide Diptericin A (DptA) is similarly a duplication of 
an ancestral DptB-like gene, which diverged rapidly in the ancestors of the subgenera 
Sophophora and Drosophila (Hanson et al., 2023). The two extant Diptericin genes show 
specific importance in defense against different microbes across Drosophila species.

In contrast to effectors, duplication or loss of signaling cascade intermediates is 
rare, which is thought to reflect the need to precisely control dosage of positive and neg-
ative regulators (Sackton et al., 2007) (Figure 33). Perhaps the reason signaling cascade 
intermediates experience high rates of positive selection (Begun and Whitley, 2000; Hill 
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et al., 2019; Jiggins and Kim, 2007; Obbard et al., 2009) is because they do not readily 
duplicate. This makes them vulnerable to disruption, as they provide an evolutionarily 
stable cascade of proteins for suppressors of immunity to target. In response, hosts must 
prevent disruption either by evolving suppressor-blockers, or by evolving minor changes 
in the targeted proteins themselves that would allow them to escape pathogen suppres-
sors. The low copy number variation that is common in these genes may therefore make 
them focal points in “red queen” host-pathogen arms races20 (e.g., see Bitra et al., 2012; 
Hamilton et al., 1990), although the framing we propose here would benefit from robust 
empirical investigations.

An exception to low copy number variation in signaling genes may be those genes 
that have multiple isoforms or physiological roles. Persephone is an ancestral duplica-
tion of the serine protease Hayan, which has dual roles in propagating extracellular Toll 
signaling and cleaving PPO in the melanization response (Dudzic et al., 2019; Nakano 
et al., 2023). Persephone resembles only one of two Hayan isoforms, and is essential in 
Toll activation in response to pathogen proteases but has a very minor role in melaniza-
tion (Dudzic et al., 2019; Ligoxygakis et al., 2002b). Strikingly, a parallel truncation of 
the Hayan/persephone daughter genes has occurred in D. ananassae to produce perse-
phone-like genes at vice versa loci, suggesting this partitioning of specialized isoform 
functions to daughter genes was favored more than once (Dudzic et al., 2019).

Despite inducibility of the immune response, which is thought to limit immune 
costs to host fitness, immune effectors are lost when pathogen pressures shift due to 
changes in ecology. Determining whether these losses are driven by passive drift or active 
selection against as-yet unidentified costs of these genes is a burgeoning avenue of re-
search. Many studies have now identified model infection systems with promising evolu-
tionary relationships (Arunkumar et al., 2023; Hanson et al., 2023; Salazar-Jaramillo and 
Wertheim, 2021; Unckless et al., 2016). Such systems will inform on the environmental 
and internal pressures that contribute to evolutionary maintenance of immune modules.

E.	 Experimental evolution
The short life cycle of Drosophila melanogaster combined with modern capacity for 
high-throughput sequencing now allows analysis of the evolution of Drosophila under 
selective pressures in the laboratory. “Evolve and resequence” studies use experimental 
evolution to adapt populations to a novel environment, followed by next-generation se-
quencing to analyze genetic changes. By placing a polymorphic population under selec-
tion for several generations, we can detect variants that increase in frequency or become 
fixed, enabling monitoring of molecular evolution in real time on a genome-wide scale 
(Long et al., 2015). This type of experimental setting can not only identify traits that are 
susceptible to selection, but also reveal new immune mechanisms. Consistent with our 
mechanistic understanding of the Drosophila immune system, the route of infection is 
an important parameter in the selection process, and both resistance and disease toler-
ance mechanisms can undergo selection (Martins et al., 2013; Paulo et al., 2023).

20	 The ‘red queen’ hypothesis states that species must continuously adapt and evolve to hold their own 
against pathogens and predators, which are also continuously evolving to better exploit their host or prey.
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Resistance to infection often rapidly increases with selection, indicating the pres-
ence of standing genetic variation in the population. Surprisingly, selection for increased 
survival to a pathogen does not always lead to increased costs, as shown by the main-
tenance of immunity under pathogen free relaxed conditions over several generations 
(Faria et al., 2015). Experimental evolution studies have linked resistance to parasitoid 
wasps with increased hemocyte numbers, differentiation of hemocytes into a pre-lamel-
locyte state poised for deployment, and increased constitutive and inducible humoral 
(Toll, Imd, and JAK/STAT pathways) responses (Kraaijeveld et al., 2002; Kraaijeveld and 
Godfray, 1997; Leitão et al., 2020; Zhou et al., 2024). Adaptation to one pathogen can also 
lead to cross-resistance of the host against several parasites (Martins et al., 2014; Singh et 
al., 2021). In some cases, increased resistance is not linked to a change in the Drosophila 
genome, but to changes in symbionts such as Wolbachia (Faria et al., 2016).

In a reverse approach, pathogen evolution can be studied in wild-type and im-
mune-deficient fly lines over several rounds of infection to identify how pathogens adapt 
to the immune system. In one study, Drosophila-adapted E. faecalis strains resistant to 
Drosophila immunity are characterized by mutations that increase resistance to various 
antibiotics and alter properties of the bacterial cell surface (Wadhawan et al., 2022). Ex-
perimental evolution of host and pathogen reveals another perspective on the immune 
system that complements mechanistic approaches and allows testing of hypotheses 
on the evolution of the immune system. These studies also emphasize that Drosophila 
strains kept in pathogen-free laboratory environments for many decades may have un-
dergone erosion of immune defenses, as illustrated by the presence of cryptic immune 
deficient mutations in some lab stocks (e.g., NimC1, Imd, PPO3) (Dudzic et al., 2015; 
Honti et al., 2013; Lemaitre et al., 1995b).
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Our knowledge of the Drosophila immune system is a vast body of slowly accumulated 
concepts and information. Following initial characterization of recognition and signal-
ing factors in the early 2000s, the later advent of CRISPR-Cas9 allowed us to study ef-
fector genes such as antimicrobial peptides, which were used as immune readouts for 
many years but were not amenable to classical genetic techniques. Functional studies 
have improved our knowledge of how effectors contribute individually or collectively 
to immunity, and we can now confidently attribute many Toll and Imd pathway contri-
butions directly to effector activity (Hanson et al., 2019b). At the same time, the crucial 
discovery of Bomanins in 2015 (Clemmons et al., 2015) revealed that we are still ignorant 
of many important mechanisms of defense. Future studies should investigate mecha-
nisms behind the broad range of protection provided by the Bomanins. Although the 
notion that some of these peptides may block the impact of bacterial toxins rather than 
having direct microbicidal activity is appealing (Huang et al., 2023; Xu et al., 2023a), 
a direct role in fungus-killing has also been suggested (Lin et al., 2019; Lindsay et al., 
2018). In either case, explaining how a peptide family can block such a wide array of 
challenges is a tough puzzle. New ways of thinking about and measuring resistance and 
tolerance (e.g. SPBL, BLUD (Duneau et al., 2017a)) are part of an ever-improving ability 
of drosophilists to dissect causes of mortality. The function or mechanism of many other 
inducible proteins such as TEPs ore IDGFs are also poorly understood. Thus, we are still 
far from understanding how the humoral response transforms the hemolymph into a 
compartment hostile to pathogens while protecting host tissues. The recent identifica-
tion of factors that protect the host from autotoxic immune responses (e.g., Turandots, 
Materazzi, catalases), reveals the complexity of host tolerance mechanisms that main-
tain vital functions such as oxygenation, osmoregulation, and removal of damaged pro-
teins during the immune response. Recent studies have also revealed how ‘non-immune’ 
tissues such as the muscles play a key role in host defense (Kierdorf et al., 2020; Yang 
and Hultmark, 2017). Future studies may reveal how various organs co-ordinate to adapt 
host physiology and metabolism in the immune response.

Although sensing and signaling has been the topic of studies for decades, it would 
be naïve to think that this process is fully understood in Drosophila. Important classes 
of receptors, such as CD36 homologs, scavenger receptors, Nimrods, cGLRs and even 
some PGRPs (e.g., PGRP-LA, PGRP-LCy) have not been functionally characterized. Al-
ternative modes of Toll and Imd activation by ROS and cGLRs, and how hemocytes con-
tribute to pathway activation, are still unclear. Multiple pathways downstream of ROS 
have been shown to trigger Upd production that activates the JAK-STAT systemic wound 
response, but it is unclear how this can be reconciled with JAK-STAT activation by the 
cytoskeletal component actinin (Gordon et al., 2018).
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Following identification and ordering of canonical Toll and Imd pathway com-
ponents, many studies have identified additional factors modifying pathway activity 
through interactions with universal cellular processes such as ubiquitination, sumoy-
lation, endocytosis, and glycosylation. It is not yet clear if these factors modify pathway 
activity in general or tissue-specific ways, and this requires more study. For example, 
it has been shown that the JNK pathway is activated by TAK1 downstream of the Imd 
pathway (Boutros et al., 2002; Silverman et al., 2003). However, it is unclear whether this 
mode of JNK activation is operational in all tissues. Thus, how pathway activation and 
inhibition differ in the fat body, in various hemocyte types, or in epithelia is an import-
ant question. Characterizing immune responses in tissues such as the salivary gland, 
Malpighian tubules, digestive tract, reproductive tissues, and tracheae might reveal new 
mechanisms of defense that remain undiscovered. A blossoming understanding of Dro-
sophila physiology has made it possible to gain a better whole-body understanding of 
immunity, including inter-organ communication during the immune response.

Most studies in Drosophila immunity have focused on specific stages, name-
ly third instar larvae and adults, for reasons of convenience. Future studies should 
explore the role of the immune system throughout the Drosophila life cycle, notably 
during metamorphosis, which remains largely unknown. Both humoral and cellular 
mechanisms are likely important during pupariation, as revealed by the high expres-
sion of antimicrobial peptide genes and the critical role of hemocytes in metamorpho-
sis (Stephenson et al., 2022). Aging is associated with chronic activation of the immune 
system and a decline in hemocyte number and immune reactivity (Arias-Rojas et al., 
2023; Arias-Rojas and Iatsenko, 2022; Clark et al., 2014; Corbally and Regan, 2022; 
Garschall and Flatt, 2018; Hanson and Lemaitre, 2023; Horn et al., 2014; Khan and 
Prasad, 2013; Rera et al., 2012; Zerofsky et al., 2005). Although it is currently a subject 
of intense study, there is still a lot to learn concerning the complex interplay between 
immunity, microbiota, and aging. A major goal in the aging field - as it is more gener-
ally when analyzing the complex relationships between immunity, microbiota and dis-
eases - is to understand if deregulation of the immune system or dysbiosis are causal 
factors that precipitate aging or simply bystander reactions accompanying this process. 
A third more holistic view is that immunity and the microbiota mutually influence 
each other in complex ways that, when disrupted, lead to a ‘vicious cycle’ that pro-
motes and maintains a disease state. According to this idea (van de Guchte et al., 2018), 
homeostasis represents a stable state of equilibrium that serves health, but perturba-
tion of this equilibrium beyond the limits of resilience can induce a shift to a stable 
pre-disease state that is generally healthy, but more likely to be triggered towards the 
development of chronic diseases. The powerful genetic tools available in Drosophila 
allow study of these complex relationships in vivo.

Many key immune processes including melanization, phagocytosis, and encap-
sulation remain poorly characterized. Studies of hemocytes have now revealed central 
roles in metabolism and repair in addition to immunity. CRISPR-Cas9 methodology 
offers the opportunity to study gene family members collectively or individually and 
clarify their roles in immune programs. The remarkable work of Katja Bruckner on con-
nections between neurons and sessile hemocyte populations, and of Ulrich Theopold on 
pyroptosis-like behavior of crystal cells and tumor defense, offer fascinating new options 
for researchers. Hotly debated topics in vertebrate immunity such as contributions of 
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lysosomal enzymes, ROS, and acidity to microbe killing in the phagosome, may be recep-
tive to genetic dissection in Drosophila. Similarly, beyond RNAi, we still know little of 
the effector mechanisms that restrict viral infection (e.g., pastrel, Vago, STING-regulated 
genes).

How the nervous and immune systems interact to shape both behavior and host 
defense is a developing area of research that can take advantage of many new insights 
into dual roles for immune genes in neurology and defense, alongside advances in map-
ping the Drosophila brain. For instance, we still know little of how the nervous system 
reacts upon brain or systemic infection, which offers an area for future studies. Further-
more, Drosophila presents a unique model for population genetics and ecology that can 
lead to dissection of general principles behind ecological and evolutionary factors that 
shape immune systems in general. New and well-assembled genomes across species, as 
well as RNA sequencing advances, now allow studies in a phylogenetic or experimen-
tal evolutionary framework. These studies can analyze how Drosophila co-evolves with 
mutualist and pathogenic microbes, and be used as a strategy to identify new immune 
genes or functions (Lezcano et al., 2023; Paulo et al., 2023; Wadhawan et al., 2022). These 
represent only a few of the many exciting research possibilities offered by the fly im-
mune system.

The genetic approaches we are able to apply in Drosophila are powerful because 
they produce results reliable enough to be built upon in a cumulative manner. An in-
formed community that is able to contextualize, correct, or build upon the findings of 
others is crucial in shaping a solid dataset. Being open to non-immune research con-
ducted in the Drosophila model system leads to new discoveries and avoids viewing the 
immune system in artificial isolation. The accumulated work that has illuminated the 
complexities of the immune system paves the way for new discoveries that will continue 
to refine our understanding of host defense and innate immunity. 

”Immunity” and beyond
Although we highlight many promising areas of research in Drosophila immunity, the 
most exciting discoveries cannot be predicted, and likely require broad exploration of the 
many facets of the Drosophila immune system. In the last fifteen years, our view of the 
Drosophila immune system has been greatly extended by major conceptual changes oc-
curring in the field of immunology at large (Pradeu et al., 2024). These include increased 
awareness of symbiotic interactions (endosymbionts, microbiota, symbiont mediated 
immunity), interest in the pathogen side of immunity, the critical role and specificity of 
barrier epithelia such as the gut, the complexity and plasticity of hemocyte functions, 
immunometabolism, increased appreciation for the importance of disease tolerance and 
behavioral defense, the non-immune functions of the immune system, and the necessity 
of considering the interrelated evolutionary and ecological framing of Drosophila as an 
organism. In some respects, we must accept that our initial view of the immune system 
was naïve, and gradually explore new topics that open new horizons of research.

This expansion of our concept of innate immunity is not without issue; in par-
ticular, it has become more difficult to draw lines around what actually constitutes an 
‘immune system’. The term ‘immune’ could be applied to all factors that contribute to 
survival to infection. However, this opens the door to nearly unlimited extension of the 
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concept of ‘immunity’ to any factor that influences health, fitness, or resilience of the 
host, including developmental factors such as ecdysone and basic cellular mechanisms 
like mitochondrial function or autophagy. A major challenge in studying the immune 
system is establishing causal links and distinguishing direct and indirect effects, al-
though both may be of value. Alternatively, the term ‘immune’ could be applied only to 
mechanisms of resistance that target microbes and parasites. The Toll and Imd pathways 
are confidently called ‘immune’ pathways because they regulate host defense peptides 
with direct effects on pathogens. Complications quickly arise when considering path-
ways such as JAK-STAT, which plays a role in the systemic wound response21 or the JNK 
pathway, which regulates cytoskeletal changes and antioxidant responses, but yet have 
critical roles in host survival to infection.

Many terms used in describing innate immunity are ambiguous because of strong 
connotations with adaptive immunity (specificity, memory), or because they represent 
archaic holdovers from early immune studies that were less precise in their understand-
ing of molecular processes or mechanisms. The terms ‘cellular immunity’ and ‘humor-
al immunity’ can easily be applied to distinguish phagocytosis by hemocytes from the 
production of antimicrobial peptides by the fat body, but the situation is less clear for 
melanization, which has both cellular and humoral facets. Terms are more precise when 
they refer to specific molecular processes, but this restricts usage and may prevent useful 
generalizations. The adoption of scientific terms is strongly influenced by their selling 
value, as evidenced by an explosion in the use of the term ‘inflammation’ in recent de-
cades. Early fly immunologists were reluctant to use this term, which was originally 
associated with migration of blood cells from vessels that are absent in insects. Over 
time however, we have gradually transitioned from ‘mechanisms of Drosophila bear sim-
ilarities to the inflammatory response of mammals’ to ‘inflammatory mechanisms of 
Drosophila’. The term ‘inflammation’ is now broadly used in Drosophila to describe NF-
kB pathway activation, migration of hemocytes to wound sites in embryos, or anti-wasp 
responses.

The tendency to describe and conceptualize the fly immune system in terms of 
mammalian immunology is worrisome, as it can create bias and blind us to import-
ant mechanisms of defense unknown in mammals. Some key discoveries in Drosophila 
immunity were driven by the simple desire to understand its function, independent of 
mammalian immunity. Surprisingly, these breakthroughs are now used to justify using 
Drosophila exclusively as a model to approach human biology. Research does not occur 
in isolation and is strongly influenced by grant agencies, politics, and journal editors that 
may overvalue ‘Drosophila as a model’ to the detriment of ‘Drosophila as itself’. This is 
not to suggest that we reject the comparative approach, but rather encourage recognition 
that insect immunity has its own importance in our understanding of the world, par-
ticularly in light of climate change effects on agricultural pests, insect vectors, and pol-
linators. The recently renewed relationships between drosophilists and entomologists 
is heartening and gives hope that immune research can move forward with increased 
dialogue between these communities and others with interest in invertebrates.

21	 The JAK-STAT pathway also regulates some putative antifungal peptides (Drs-like peptides) in the 
gut (Buchon et al., 2009a; Osman et al., 2012; Buchon et al., 2009b) 
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We have attempted here to encompass some of the intriguing progress made in 
Drosophila immunity that has accompanied major conceptual and methodological ad-
vances in recent years. It is difficult to predict what the next big findings will be, as we 
are far from exploring the full extent of a field that has only offered new intrigue with 
each discovery. This has and will continue to depend on the unique passion of drosoph-
ilists, with the support of granting agencies, to push forward and share new knowledge 
on the fascinating immune system of this little fly. Exciting discoveries await us.
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