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1.1 INTRODUCTION TO DIGITAL SIGNAL  
      PROCESSING

Let us first define the main concepts of this course. A signal is a description of the evolution of a physical 
phenomenon. Processing is where we make sense of the information that has been described by the signal. 
There are two ways we can process a signal:
–– We can analyze it: understand the information carried by the signal and perhaps extract a more high level 
description.

–– We can synthesize it: create a physical phenomenon that contains a certain amount of information that 
we want to put out in the world.

The digital paradigm is composed of two fundamental ingredients: discrete time and discrete amplitude. 

Discrete models are extremely easy to use computationally speaking. Mathematically these are mappings 
from a set of integers to a set of values, V, which could be a set of real numbers. We will indicate a discrete-
time signal as x[n]. The index n does not have a physical dimension, it is just an ordinal number that orders 
the samples one after another. 

The continuous-time representation and the discrete-time representation are equivalent. Mathematically, 
the result is known as a sampling theorem, and it has a very simple statement: 

which we will study in more detail in later classes.

Discrete amplitudes have very important consequences in three domains, as it is easier to deal with a finite 
set of values:
–– storage
–– processing
–– transmission
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1.2 DISCRETE TIME SIGNALS

Now we will consider discrete time signals and operators. First, we will define what discrete time signals 
are. A discrete time signal is a sequence of complex numbers. For now, most of the signals we will study 
will have one dimension, which typically will be time. Notation is particularly important: indices of a signal 
named x are integers such that the nth term of the signal will be denoted as x[n]. Note that the indices are 
dimensionless; the analysis of the signal implies the periodicity of measurements, also known as sampling. 
Typically, we have two-sided sequences x: Z → C meaning they could go from –infinity to +infinity. 

Among the formal signals used in this class, there is the delta signal, x[n] = ∂[n] (fig. 1). This is the simplest 
signal you will encounter in this class, it is equal to 1 whenever n = 0 and 0 otherwise. 

The delta signal

x [n] = δ[n]

−15 −10 −5 0 5 10 15

0

1

59

				    5:15� 16:29

The delta signal

The next simple signal you will encounter is the unit step, x[n] = u[n], which is a sequence equal to 0 from 
–∞ until the origin and then flips to 1 at the origin to +∞. 

The unit step

x [n] = u[n]

−15 −10 −5 0 5 10 15

0

1

62

				            6:26� 16:29

The unit step signal.

FIGURE 1

FIGURE 2
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The third signal we will study in this lecture is exponential decay. x[n] = |a|nu[n] where |a| < 1, which is a 
combination of the unit step, meaning it is equal to 0 before the origin and then is positive. At that point, 
we apply an exponential where the root is smaller than 1. As it is taken to the nth power, it comes down as 
an exponential. 

The exponential decay

x [n] = |a|n u[n], |a| < 1

−15 −10 −5 0 5 10 15

0

1

64

				     6:55� 16:29

The exponential decay signal

Nowadays, most of the signals we encounter in real life are oscillations, a combination of sinusoids. A 
sinusoid is a signal such that x[n] = sin(ω0n + ø). 

The sinusoid

x [n] = sin(ω0n + θ)

−15 −10 −5 0 5 10 15

−1

0

1

68

									          13:11� 16:29

The sinusoid

FIGURE 4

FIGURE 3
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There are four classes of signals and each is used in a different case:
–– The finite length signal: can either be written as a sequence notation, x[n] where n = 0, ... ,N–1, or as a 
vector notation x = [x0 x1 ... xN-1]T. They are very useful for numerical entities (e.g., Matlab).

–– The infinite length signal: can also be written as a sequence notation, x[n] where n ∈ . Very good for 
mathematical abstraction and theorems.

–– The periodic signal: for an N-periodic sequence ~x[n] = ~x[n + kN] where n, k, N ∈  and one of these 
periods has all the information needed. It is thus a bridge between finite and infinite length sequences.

–– The finite support sequence: _x[n] = x[n] for 0 ≤ n ≤ N–1 and 0 otherwise it has the same information as 
a finite length signal of length N. It is another possible bridge between finite and infinite length signals.

Let’s now look at the elementary operators that we can apply to these elementary signals:
–– scaling: y[n] = αx[n], where α is a scalar
–– sum: y[n] = x[n] + z[n]
–– product: y[n] = x[n]·z[n] 
–– shift by k (delay): y[n] = x[n–k]

Two conceptual characteristics of a signal are its power and energy. The energy is the sum of the squares 
of the samples. It may or may not be finite. The notion of power is simply the energy of one period divided 
by the length of the period.

For periodic signals, energy will be infinite and power will be the same formula as stated above, but applied 
to a single period. 
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1.3.a HOW DOES YOUR PC PLAY 
         DISCRETE-TIME SOUND?

A computer has interfaces that allow you to visualize the signals that you create by writing a few lines of 
code. You can visualize them as plots on the screen, and more importantly, you can materialize the signals 
as audio signals that you can hear. However, an interface is needed, as our ears are analog devices and the 
PC is a digital device. 

In discrete time, n has no physical dimension, and periodicity is determined by how many samples we have 
to observe before the pattern repeats. In the physical world, periodicity is measured in how many seconds 
we have to wait before the pattern repeats, and frequency is measured in Hertz (s–1). Figure 1 shows how 
the PC bridges this gap with a sound card.How your PC plays sounds

x [n] sound card

Ts system clock

40

Ts is the time we wait before we take a new sample from a discrete 
time sequence and feed it into the sound card. Hence a periodicity 
of M samples becomes a periodicity of MTs seconds, so that the real-
world frequency is thus: f = 1/MTs Hz.

		         2:05� 3:33

How your PC plays sound

1.3.b THE KARPLUS-STRONG ALGORITHM

This is an example of what signal processing can be applied to. We will see that there are some simple 
primitives that can be used to build signal processing devices. We will first consider digital signal processing 
as Lego blocks. Lego blocks have various colors and shapes but they all fit together. A block diagram, as you 
can see in figure 1, takes a sequence x[n] as an input and outputs another sequence y[n] through multipliers, 
adders, or delays. 

0:10� 19:42

Lego versus block diagram

FIGURE 1

FIGURE 1

DSP as Lego

x [n] + + y [n]

z−1

+ z−3

z−1

a b

−1

c

81
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x [n]

+ x [n] + y [n]

y [n]

82

An adder takes two signals and outputs their sum (fig. 2). 

A multiplier is denoted by a variable placed next to an arrow, so that x 
gets multiplied by this variable (fig. 3).

The delay is denoted by z–N and the output of a delay is the same 
sequence shifted by an integer N to the right (fig. 4). 

0:40� 19:42

Adder
Building Blocks: Multiplier

x [n] αx [n]
α

83

    1:03� 19:42

MultiplierBuilding Blocks: Unit Delay

x [n] z−1 x [n − 1]

84

        1:21� 19:42

Delay

Let’s study an operator: the moving average. The 2-point moving average is a simple average:

Its output is thus a “local” average: 

We can now use blocks to build a diagram for the 2-point moving average in figure 5.

The 2-point Moving Average Using Lego

x [n] + y [n]

z−1

1/2

87

    		              4:00� 19:42

Moving average into diagram blocks

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5
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In figure 6, we can observe that the arrow of the previous block diagram has been reversed. That leads to a 
very different type of output. A single input other than 0 will, in general, generate a infinite output.

What if we reverse the loop?

x [n] + y [n]

z−1

92

    				                 7:20� 19:42

Reversed loop of moving average block diagram

In figure 7, we can see a generalized version of that reversed loop. If we fix α to 1, then we can observe that 
a delay of M implies an M-sample periodicity, which could be very useful in playing sounds. Going further 
into that generalized version:
–– M controls the frequency (pitch).
–– α controls the envelope (decay whenever α < 1).

The Karplus-Strong algorithm is a range invented to simulate guitar sounds. It is initialized with a sequence 
of random numbers. We apply the generalized version of the reversed loop to it, and we can listen to the 
output that sounds surprisingly like a guitar. We encourage you to listen to it on the video (15:50/19:42).

An interesting generalization

x [n] + y [n]

z−M
α

y [n] = α y [n −M] + x [n]

100
    		            					       11:30� 19:42

Generalized version of a reversed loop

FIGURE 6

FIGURE 7

 GOETHE’S TEMPERATURE MEASUREMENT

The aim of the “signal of the day” video type is to show you some real-life applications of signal processing, 
which will be related to the theory taught in other videos. This video consists in investigating the longest 
recorded signal in daily measurements: a series of daily mean temperatures recorded in Jena (Germany). 
For convenience, we computed the annual mean daily temperature. We then applied a moving average over 
this obtained signal with a window of 25 years: we can observe that the resulting function increases over 
time which provides a perfect illustration of the effect of global warming.

Signalof theDay
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1.4 COMPLEX EXPONENTIALS
The complex exponential

e jα = cosα+ j sinα

−1 1

−1

1

Re

Im

e
jα

α

20

Most elementary and fundamental discrete time signals are oscillations. 
For an oscillation to be mathematically defined, we need to have 
certain information such as:
–– a frequency ω (omega) (units in radians)
–– an initial phase ø (units in radians)
–– an amplitude A (units depending on underlying measurement)
–– a trigonometric function

Complex numbers are essential for simplifying some complex 
expressions. A trigonometric expression can be reduced to sines and 
cosines using Euler’s formula:

x[n] = Ae j(ωn+ø) = A[cos(ωn + ø) + jsin(ωn + ø)]

Mathematically, it is simpler to use a complex exponential than sines 
and cosines. The complex exponential relies on the unit circle whenever 
A = 1, as in figure 1. 	 4:10� 14:45

Spatial representation of a complex exponentialThe complex exponential

rotation: z′ = z e jα

Re

Im

zz

z
′

α

21

Let z be a point on the complex plane, and we want to rotate it by α. 
We can simply multiply it by a complex number z’ of argument α. 

An example of the application of this complex exponential would 
be the complex exponential machine: x[n] = ejwn x[n + 1] = e jwnx[n]. 
This kind of application leads to an illustration of aliasing that we 
can observe in the wagon wheel effect: a wheel going backwards in 
our perception instead of going forward. This is because the chosen 
frequency is too large: if the frequency is between π and 2π, we are 
most likely to think of it as a negative frequency. This is where the 
main differences between discrete time (no physical dimension, how 
many samples before pattern repeats) and what we call “real world” 
(frequency measured in Hz and notion of time between the repetition 
of patterns) appear. We have to find a way to relate them to one 
another, and this will be done by interpolation: let Ts be the time in 
seconds between two samples, and M be the periodicity, the “real-
world” periodicity will thus be f = 1/MTs [Hz].

	    4:50� 14:45

Rotation on the complex plane

FIGURE 1

FIGURE 2
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2.1 SIGNAL PROCESSING AND VECTOR SPACES

As linear algebra is a prerequisite for this course, it is important that you understand how a matrix-vector 
multiplication is carried out: 

As we will be dealing with vectors, an important rule is the vector addition rule that you can observe in 
figure 1.

Addition in R2

x+ y =
[

x0 + y0 x1 + y1
]T

1

2

3

−1

1 2 3 4 5 6 7−1−2−3−4

x

y

x+ y

22

                   0:30� 4:03

Parallelogram rule for vector addition, prerequisite

As we have four types of signals, it would very complicated to specialize the theory to each of the cases 
explained, so we need a common framework: vector space. It is very convenient as it provides the same 
framework for different classes of signals and also for continuous-time signals. Vector spaces are very 
general objects; they are defined by their properties (not by the shape of the vectors they contain), and 
once these are satisfied, we can use all the tools of the space.

FIGURE 1

http://www.ppur.org
http://moocs.epfl.ch


LEARN 

FASTER, 

LEARN 

BETTER!

BOOCs 
EPFL14

Digital Signal Processing
Paolo Prandoni  
and Martin Vetterli

2.2.a VECTOR SPACE

You should be familiar with some spaces such as:
–– R2, R3: Euclidean space
–– RN, CN: extension of Euclidean space

Here are two spaces that you might not know:
–– l2(Z): space of square-summable infinite sequences
–– L2([a,b]): space of square-integrable functions over an interval

Here, the key point is that vectors can be arbitrarily complex entities, such as functions. And this will be very 
useful in unifying our approach to signal processing.

Note that some spaces can be represented graphically (R2, R3) and others cannot (RN for N > 3). What all 
these vectors spaces have in common is that they obey a set of axioms that define the properties of the 
vectors and what we can do with these vectors.

The inner product (dot product) provides an additional operation to measure and compare vectors. It takes 
a couple of vectors and returns a scalar: 

It measures the similarity between two vectors; if the inner product is zero, then the vectors are orthogonal 
(maximally different). It is also defined axiomatically:

http://www.ppur.org
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The formula to define the inner product in R2 is: 

< x, y >= x0y0 + x1y1 = ||x|| · ||y||cos↵

which can be extended to RN.

Now, for L2([–1,1]): 

Also, note that: 

2.2.b SIGNAL SPACE

We know that finite-length and periodic signals live in CN, a vector x is denoted by [x0 x1 ... xN–1]T, all 
operations are well defined, and the space of N-periodic signals is sometimes indicated by eCN.

In CN, the inner product is defined as follows: 

For infinite-length sequences, we will define the vector space of square-summable sequences l2(Z) to avoid 
the “explosion” of the sum: 

However, many interesting signals are not in l2(Z). 

Now, let us talk about completeness: if a vector space is closed under the limiting operation, we say that 
the vector space is complete, which will be useful to prove some fundamental results such as the sampling 
theorem. When a vector space equipped with an inner product is also complete, we call the vector space a 
Hilbert space. 

http://www.ppur.org
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2.3 BASES

The axioms of a vector space tell us how to combine vectors together. A linear combination of vectors is the 
basic operation that we perform in vector spaces: 

When we combine vectors together to obtain new vectors in the space, one usual question is whether we 
can find a minimal set of vectors {w(k)} so that we can express any vector in the space as a linear combination 
of this base factor. This set of building blocks will be called the bases. Here is an example: the canonical 
basis for the Euclidean plane (canonical R2 basis): 

It is possible to find a basis for infinite-dimensional spaces and for function vector spaces. An infinite number 
of bases exists for these spaces. For functions, one of the most famous is the Fourier basis, where for [–1,1]: 

Now let us give you a formal definition of a basis for a vector space H: let W be a set of K vectors such that 
W = {w(k)}k=0,1,...,K–1, W is a basis for H if:

Uniqueness of representation is equivalent to linear independence: 

In an orthogonal basis, the basis vectors are mutually orthogonal: 

< w

(k)
, w

(n)
>= 0, for k 6= n

In an orthonormal basis, the basis vectors are mutually orthonormal: 

http://www.ppur.org
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A frequent question is how to find the coefficients: if the basis is orthonormal, this is the direct computation: 

Also, this is how to find the new coefficients when a change of basis is made: 

http://www.ppur.org
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2.4 SUBSPACE-BASED APPROXIMATION

A vector subspace is a subset of vectors closed under addition and scalar multiplication. We can extend the 
concept of subspace to more complicated vector spaces such as function vector spaces. Subspaces have 
their own bases.

Approximation

Problem:

� vector x ∈ V

� subspace S ⊆ V

� approximate x with x̂ ∈ S

e
(0)

e
(1)

e
(2)

x

x̂

69

	 2:18� 16:18

Approximation of a vector x in V in subspace S

Consider an orthonormal basis {s(k)}k=0,1,...,K–1, for the subspace S. The orthogonal projection of a vector x onto 
this subspace is defined by: 

The orthogonal projection is the best approximation for a given vector x onto the given subspace S. It has 
two fundamental properties:
–– The orthogonal projection has minimum-norm error: 
–– Its error is orthogonal to the approximation: 

We can build an orthonormal basis using the Gram-Schmidt orthonormalization procedure: 
{s(k)} (original set) → {u(k)} (orthonormal set). These are the basic steps:

If we apply the Gram-Schmidt procedure to the set of polynomials PN([–1,1]) we obtain a set of orthonormal 
polynomials called the Legendre polynomials, which are very useful for function approximations. 

FIGURE 1
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-1 0 1−1 0 1

−2

−1

0

1

2

79
									         12:50� 16:18

Legendre polynomials

EXOPLANET HUNTING

Looking at an image of the universe taken by the space telescope Hubble, the universe contains an estimated 
100 billion galaxies, each containing hundreds of billions of stars. Thus there is a very high likelihood that 
another star planet system exists, comparable to our solar system. We are going to study a method for 
finding exoplanets: the transit method. As the planet transits in front of its star, the observer measures the 
reduction in the flux of light. It can be shown that the relative change in the flux is equal to the ratio between 
the radius of the planet and the radius of the star to the square: it is called the transit depth. We can adopt 
another point of view and use a CCD camera to measure the amount of light (technically the amount of 
photons) from the star that reaches the observer. This is where Digital Signal Processing comes into play. 
For further information, you will have to follow a course on statistical signal processing.

FIGURE 2

Signalof theDay
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3.1.a THE FREQUENCY DOMAIN

The goal of the discrete Fourier transform (DFT) is to express a signal in terms of its sinusoidal components. 
Every sustainable dynamic system exhibits an oscillatory behavior, which is easy to describe and 
parameterize. From the analysis point of view, the Fourier transform basically changes from the time domain 
to the frequency domain. A signal is decomposed into different frequencies, which reveals hidden signal 
properties. The converse of this process is to revert from the frequency domain to the time domain and 
synthesize a signal from its frequency components. We can use that to generate signals that have a known 
frequency content, which can in turn be used in signal processing to fit signals to specific frequency regions.

3.1.b THE DFT AS A CHANGE OF BASIS

For a finite-length signal, the Fourier analysis is simply a change of basis. The Fourier basis for CN is the 
following:

As an example, we will study w(3); the fundamental frequency of this vector will be 2π/3, so we have three 
periods both on the real and imaginary axes. Basis vector w(3) ∈ C64

0 32 64

−1

0

1

R
e

0 32 64

−1

0

1

Im

49

						      5:29� 10:49

Example of w (3)

FIGURE 1

http://www.ppur.org
http://moocs.epfl.ch


LEARN 

FASTER, 

LEARN 

BETTER!

BOOCs 
EPFL 21

Digital Signal Processing
Paolo Prandoni  
and Martin Vetterli

As we go up with the basis index, the vectors start moving faster. As we increase the index of the Fourier 
vector, the underlying frequency increases as well. Because of the discrete nature of the signal, it sometimes 
might be hard to understand the signs of the shape of the signal. A tell-tale sign of high frequency is a sign 
alternation. This constitutes a set of orthogonal vectors in n and can be proved by simple calculus: the inner 
product.

< w

(k)
, w

(h)
>=

N−1X

n=0

(ej
2⇡
N nk)⇤ej

2⇡
N nh =

N−1X

n=0

e

j 2⇡
N (h−k)n =

8
><

>:

N for h = k

1� e

j2⇡(h−k)

1� e

j 2⇡
N (h−k)

= 0 otherwise

How do we solve the last sum? When h = k, we take the inner product of a vector with itself. All the elements 
in the sum will be equal to 1, so the sum will converge to N. When h ≠ k, then it is a type aN series. Note that 
they are not orthonormal, we will have to normalize the vectors, dividing them by 

p
N . 
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3.2.a THE DEFINITION OF DFT

Given the arbitrary element of n, the analysis formula will give us N new coefficients for the vector in the 
new basis, each of which will be denoted by X[k]; the synthesis formula will allow us to retrieve the original 
vector in the canonical basis. 

We can express the change of basis in matrix notation. The Hermitian operator is a combination of 
transposition and conjugation of each element of the matrix. 

 

A third way of looking at the DFT is to explicitly consider the operations involved as a sum: 
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3.2.b EXAMPLES OF DFT CALCULATION

The DFT is a linear operator. DFT of the delta signal: the delta signal will isolate the 0-component of each 
basis vector, so the product will be 1 for all the values of the index k. So the Fourier transform of discrete 
time delta is constant 1. 

DFT of x [n] = δ[n], x [n] ∈ CN

X [k] =

N−1
∑

n=0

δ[n] e−j
2π
N
nk

= 1

0 15

0

1

0 15

0

1

23

0:30� 13:37

DFT of a delta signal

DFT of the unit function: corresponds to a delta (fig. 2).

DFT of x [n] = 1, x [n] ∈ CN

X [k] =

N−1
∑

n=0

e−j
2π
N
nk

= Nδ[k]

0 15

0

1

0 15

0

16

24

       1:00� 13:37

DFT of a delta signal

FIGURE 1

FIGURE 2
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DFT of a sinusoidal function of frequency multiple of 2π /N: one trick is to decompose the sines and cosines into 
exponentials (using Euler’s formula), which then will correspond to a vector of our basis. Here is an example: 

A clear way to plot a Fourier transform is to plot both the magnitude and phase of the Fourier coefficients. 

DFT of the step vector: from the following calculus, we can see that X[0] = M, W[k] = 0 is Mk/N is an integer 
and that the phase of X[k] is linear (except at time changes), leading to the plot on the following figure 3.

											           12:20� 13:37

DFT of a step vector

Often, the phase displayed is wrapped over [–π, π], adding or subtracting 2π.

FIGURE 3

DFT of length-4 step in C64

0 32 64

|
X
[k
]|

0

−π
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−3π

−4π

0 32 64

∠
X
[k
]

38

DFT of length-4 step in C64 (phase wrapped)

0 32 64

|
X
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3.2.c INTERPRETING A DFT PLOT

We have frequency coefficients from 0 to N – 1: for example, the first N/2 coefficients correspond to frequencies 
less than π – counter-clockwise movement, the other N/2 coefficients correspond to frequencies more than 
π – clockwise movement. Low frequencies are around 0 and N – 1, whereas high frequencies are around N/2.

Interpreting a DFT plot

0 N/2 N − 1

|
X
[k
]|

frequencies < π (counterclockwise)

41

0:20� 4:58

Interpreting a DFT plot

Interpreting a DFT plot

0 N/2 N − 1

|
X
[k
]|

frequencies > π (clockwise)

41

	     0:30� 4:58

Interpreting a DFT plot

Interpreting a DFT plot

0 N/2 N − 1

|
X
[k
]|

low frequencies (slow) low frequencies (slow)

high frequencies (fast)

41

		   0:45� 4:58

Interpreting a DFT plot

FIGURE 1a

FIGURE 1b

FIGURE 1c
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The DFT of real signals is symmetric in magnitude. In discrete-time, we have two situations in function of 
the parity of the signal. We say that the magnitude of the kth coefficient will be equal to the magnitude of 
the (N – k)th coefficient.DFT of real signals

For real signals the DFT is “symmetric” in magnitude:

|X [k]| = |X [N − k]| for k = 1, 2, . . . , ⌊N/2⌋

0 1 2 3 4

N = 5, odd length

0 1 2 3 4 5

N = 6, even length

47

		 								                        4:00� 4:58

DFT of real signals

FIGURE 2
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3.3.a DFT ANALYSIS

The presence of spikes on the DFT plot indicates a strong sinusoidal component. More importantly, the 
sinusoidal component has a frequency that is a multiple of the basic frequency for the space that the signal 
lives in. 

The DFT coefficient for k = 0 is a non-normalized average of all the data points. The period of the signal 
can be found by dividing the number of points N by the index corresponding to the main peak. The fastest 
positive frequency is π. So, two samples are required to complete a full revolution. Now, the clock Ts can 
also be expressed as 1/Fs, where Fs is the frequency of the system. This is the standard relationship between 
period and frequency for any system. So, if the real world for the fastest sinusoid in a digital system is 2Ts 
measured in seconds, the real world frequency for the fastest sinusoid is Fs/2. Therefore the maximum 
frequency once the period between samples has been determined is Fs/2 or equivalently 1/2Ts. 

3.3.b DFT EXAMPLE –  
         ANALYSIS OF MUSICAL INSTRUMENTS

Harmonics are what actually give the timbre of the instrument. For a signal of frequency w, we say that 
the harmonics are the multiples of w. We will look at the Fourier spectra of three instruments: the cello, 
saxophone, and violin (fig.1). A mathematical method to help us differentiate those three sounds from one 
another and guess at the frequency is to use the DFT over a few periods (fig. 2). The spectra look different 
but the peaks are at the same places, because the frequency played is 220 Hz and the harmonics are 
multiples of 220.

		 								                        2:02� 4:41

Comparison between the sound signals of the three instruments 

FIGURE 1
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		 								                        2:50� 4:41

Comparison between the three DFTs

3.3.c DFT SYNTHESIS

Now let’s look at the sinusoidal generator. We have a complex exponential with a frequency, which is a 
multiple of 2π/N and has an initial phase. The way this generator works is by successively generating points 
on the unit circle starting at the phase and proceeding in increments of 2π/N. 

Synthesis: the sinusoidal generator

wk [n] = e j(
2π
N
kn+φk )

Re

Im

wk [3]
2π

N
k

3

    0:20� 5:46

Sinusoidal generator

FIGURE 2

FIGURE 1
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The DFT synthesis formula can be imagined as a machine composed of N sinusoidal generators, each of 
which is initialized with a gain and phase factor. All their outputs will be summed together, which will give 
us the original signal back. 
 

    	      1:14� 5:46

DFT synthesis “machine” 

What happens if we turn the crank of the machine more than N times? The output will become periodic.

x[n + N] = x[n] 

This is actually quite apparent from the structure of the synthesis and analysis formulae of the DFT. Let’s 
start with the synthesis formula. The complex exponential is 2π periodic, so if you push n over N – 1, this 
will simply cycle over, as if N was looping over the 0 to N – 1 range. So in the end, you can actually safely 
take N to be from the set of integers and the output will be an N-periodic signal in a time domain. The same 
holds for the analysis formula. You can let the index, k, roam over the entire set of integers. And since it 
appears only in this complex exponential here, again, it will be as if k was looping over the 0 to N – 1 range. 
So what really happens is that you can consider the sequence of DFT coefficients as an N-periodic signal in 
the frequency domain.

FIGURE 2

Synthesis: the sinusoidal generator

Ak

φk

∼ k Ake
j(

2π
N
kn+φk )

4

DFT synthesis formula

A 0

φ 0

∼ 0

A 1

φ 1

∼ 1

A 2

φ 2

∼ 2 + x [n]

. . .

AN−2

φN−2

∼ N−2

AN−1

φN−1

∼ N−1

5
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3.3.d DFT EXAMPLE – 
         TIDE PREDICTION IN VENICE

Tides are periodical phenomena. We will try to find out whether we can predict tides using Fourier transforms. 
Using Fourier coefficients we can recover a signal very close to the original one and thus continue further 
than the original data set, predicting what is going to happen in the future. 

			    1:18� 4:10

Data set 

			                1:41� 4:10

Fourier transform of data set log-magnitude

			  									            4:00� 4:10

Approximation of original data set

FIGURE 1

FIGURE 2

FIGURE 3
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3.3.e DFT EXAMPLE – 
         MP3 COMPRESSION

Compression introduces noise and loss, so why can’t we hear it on an MP3 record? Because this noise has 
been shaped to fool the human hearing system. One of the key elements of the compression algorithm is to 
shape errors adaptively as the Fourier transform spectrum varies, constantly adapting using the short time 
Fourier transform domain. The idea is essentially a local DFT. 

THE FIRST MAN-MADE SIGNAL 
FROM OUTER SPACE

Sputnik was the first artificial Earth satellite, launched by the Soviet Union on October 4, 1957. Its main 
spherical body was surrounded by four external radio antennae, which transmitted a signal. This signal was 
thus the first man-made signal sent from outer space. Amateur radio operators could detect the signal from 
all over the world. The transmitted signal was just a sequence of beeps. If we plot the magnitude of the 
Fourier transform of the signal transmitted by Sputnik, there is a large component at ω = 0. We can also 
observe two small peaks, which correspond to the frequency of the transmitted beeps. We see that the two 
peaks now appear at 1653 Hertz and –1653 Hertz.

Signalof theDay
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3.4.a THE SHORT-TIME FOURIER TRANSFORM

Dual-Tone Multi Frequency dialing signaling is a method used in analog telephones. For each button press, 
we generate a sinusoid composed of two frequencies taken from a specific matrix. This is done to minimize 
the error whenever someone tries to recover the sequence of numbers dialed on an analog phone. When 
we take the DFT of these signals, the frequencies associated with each number will appear, but we cannot 
tell in which order the numbers have been pressed. The idea behind the short-time Fourier transform is 
to take small pieces of the original signal in order to localize in time the results obtained on the Fourier 
transform. We move the analysis window. 

3.4.b THE SPECTROGRAM

The spectrogram is a way of showing time-varying spectral information in one single plot. We color-code 
the magnitudes: dark hues correspond to small values and light hues correspond to high values. We use the 
logarithm of the magnitude in order to compress the range of values. We put the spectral slices one after 
another in order to get an image like the following image (fig. 1). On the vertical axis, we place the DFT 
coefficients.

DTMF spectrogram

0 N

0

L/2

m

k

77

	     1:17� 7:41

DTMF spectrogram (analog telephone example, 3.4.a)

If we know the “system clock” Fs = 1/Ts we can label the axis:
–– highest positive frequency Fs/2 Hz
–– frequency resolution Fs/L Hz
–– width of time slices: LTs seconds

FIGURE 1
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3.4.c TIME-FREQUENCY TILING

Speech is a particularly difficult signal to analyze. The idea is to split the signals.
Speech analysis

0 2.5s

Play

85

	      0:55� 5:31

“There is a lag between thoughts and acts” 

Spectrograms can be useful for getting information: narrow-band spectrograms give us information on the 
harmonic parts of speech and wide-band spectrograms give us information on the pulse-like and noise-like 
consonant sounds in speech. 

The short time Fourier transform determines a tiling of the time-frequency plane, where the size of each tile 
is specified by the time and frequency resolution of the STFD.

FIGURE 1
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3.5.a DISCRETE FOURIER SERIES

When we talk about the periodicity of the Fourier transform, we refer to the Discrete Fourier Series (DFS). 
The DFS is basically the DFT with periodicity explicit. The DFS maps an N-periodic signal onto an N-periodic 
sequence of Fourier coefficients, and the inverse DFS maps an N-period sequence of Fourier coefficients 
onto an N-periodic signal. If we take the DFS of this periodic sequence with a shift, we can easily work 
out that the DFT coefficient for index k is equal to the DFT coefficient for index k of the original sequence 
without the shift. The DFS helps us understand how to define time shifts for finite-length signals.

For an N-periodic sequence x̃[n]:

1. x̃[n − M ] for all M ∈ N

2. DFS x̃[n − M ] = e−j 2π
N MkX̃[k]

3. IDFS e−j 2π
N MkX̃[k] = x̃[n − M ].

For an N-point signal x[n]:

1. x[n-M] is not well-defined

2. build x̃[n] = x[n mod N ] ⇒ X̃[k] = X[k]

3. IDFT e−j 2π
N MkX[k] = IDFS e−j 2π

N MkX̃[k] = x̃[n−M ] = x[(n−M) mod N ]

4. shifts for finite length signals are naturally circular.
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3.5.b KARPLUS-STRONG REVISITED AND DFS

An N-periodic sequence has only N degrees of freedom. The DFS provides us with a sequence that only has 
N distinct Fourier coefficients. 

Karplus-Strong revisited

x [n] + y [n]

z−M
α

y [n] = α y [n −M] + x [n]

22

0:22� 7:54

Karplus-Strong circuit

Consider a finite-length signal of length M. What happens if we take the DFT of two periods of a finite-
length signal? The DFT is the same as if it were one period with extra 0-valued coefficients. Let’s generalize 
this case by taking L periods, and let y be that signal. Let’s calculate its DFT: 

      

L�1X

p=0

e

�j 2⇡
L pk =

(
L, if k multiple of L

0, otherwise

Moreover, these nonzero coefficients are just scaled versions of the DFT coefficients of the original finite-
length sequence. Therefore, all the spectral information of an N-periodic sequence is entirely captured by 
the DFT coefficients of one period.

FIGURE 1
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3.6.a KARPLUS-STRONG REVISITED AND DTFT

How do we calculate the Fourier transform of infinite non-periodic signals? We can use the Karplus-Strong 
algorithm simply by putting the factor alpha to less than 1 and then compute its DFT. As N goes to infinity, 
the frequency becomes smaller, and the set of frequencies in the [0, 2π] range becomes denser. In the limit, 
the set of multiples of the fundamental frequency 2π/N will become so dense that we will try to replace 
this by a real valued variable frequency. And this real valued variable will last for the [0, 2π] interval. So if we 
replace that in the formulation for the DFT, we now get a sum over all the points in the signal. 

Here is a definition of the Discrete-Time Fourier Transform: the signal needs to be square summable (finite 
energy).

F(ω) is 2π-periodic. To stress its periodicity, we will write F(ω) as X(e jω), reminding us that it is 2π-periodic. 
We choose [–π, π] interval as the representative interval. 

The factor M in the exponent simply implies that there is scaling of the frequency axis. 

So here we have derived the DTFT, namely the spectrum of an infinite non periodic signal that is not a trivial 
signal. Now so far we have treated the DTFT as a formal operator. And in the next module we will see how 
the DTFT relates to the concept of change of basis in an appropriate Hilbert space. 
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3.6.b EXISTENCE AND PROPERTIES OF THE DTFT

Existence means that the sum defining the DTFT does not explode. Our initial hypothesis is that our signal 
is absolutely summable. 

The inversion of the integral and the sum is possible because x is absolutely summable. 

Formally, the DTFT is a change of basis over an infinite, uncountable basis. The DTFT exists for all square-
summable sequences.

							       4:10� 7:10

DFT, DFS, DTFT

Here are the DTFT properties:

• linearity DTFT{αx[n] + βy[n]} = αX(ejω) + βY (ejω)

• time shift DTFT{x[n − M ]} = e−jωMX(ejω)

• modulation (dual) DTFT{ejω0n} = X(ej(ω−ω0))

• time reversal DTFT{x[−n]} = X(ejω)

• conjugation DTFT{x∗[n]} = X∗(e−jω)

• if x[n] is symmetric, the DTFT is symmetric: x[n] = x[−n] ⇔X(ejω) =
X(ejω)

• if x[n] is real, the DTFT is Hermitian-symmetric: x[n] = x∗[n] ⇔
X(ejω) = X∗(ejω)

• special case: if x[n] is real, the magnitude of the DTFT is symmetric:x[n] ∈
R|X(ejω)| = |X(e−jω)|

• more special case: if x[n] is real and symmetric, X(ejω) is also real
and symmetric

Review: DFT

CN CN

X [k] = ⟨e j
2π
N
nk , x [n]⟩

x [n] = (1/N)
∑

X [k] e j
2π
N
nk

basis: {e j
2π
N
nk}k

69

Review: DFS

C̃N CN

X̃ [k] = ⟨e j
2π
N
nk , x̃ [n]⟩

x̃ [n] = (1/N)
∑

X̃ [k] e j
2π
N
nk

basis: {e j
2π
N
nk}k

70

DTFT

ℓ2(Z) L2([−π, π])

X (e jω) = ⟨e jωn, x [n]⟩

x [n] = (1/2π)
∫

X (e jω)e jωndω

“basis”: {ejωn}ω

4

FIGURE 1
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3.6.c THE DTFT AS A CHANGE OF BASIS

The DFT of the constant 1 is very well defined, and is equal to N times the delta function in frequency. But 
the DTFT of 1 is, by definition, the sum from n goes from – ∞ to + ∞ of e–jwn, at w = 0, and that sum diverges. 
This is because the unit sequence is not square summable, as are many other interesting signals. We will 
thus introduce the Dirac delta function. 

The area under this curve is equal to 1, as it is basically the function limk → inf k · rect(kt). We will be using the 
Dirac delta function in the frequency domain; as all DTFT spectra are 2π periodic, and so to use this tool in 
the frequency domain, we have to periodize it: its 2π-periodic version is called a pulse train. 

Graphical representation

−4π −3π −2π −π 0 π 2π 3π 4π

15

								        6:04� 9:48

Graphic representation of the pulse train

IDTFT{δ̃(!)} =
1

2⇡

Z ⇡

�⇡

δ̃(!)ej!n
d! =

Z ⇡

�⇡

δ(!)ej!n
d! = e

j!|!=0 = 1

IDFT{δ̃(ω − ω0)} = ejω0n. so:

• DTFT{1} = δ̃(ω)

• DTFT{ejω0n} = δ̃(ω − ω0)

• DTFT{cos(ω0n)} = [δ̃(ω − ω0) + δ̃(ω + ω0)]/2

• DTFT{sin(ω0n)} = −j[δ̃(ω − ω0) − δ̃(ω + ω0)]/2

FIGURE 1
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FIGURE 1

FIGURE 2

3.7.a SINUSOIDAL MODULATION

There are three broad categories of signals, in both discrete and continuous times, according to where the 
spectral energy mostly concentrates:
–– Lowpass signals (a.k.a. “baseband” signals): the energy is mostly concentrated around 0 and there is no 
energy outside.

–– Highpass signals: the energy is mostly concentrated around pi and –π and there is no energy around 0.
–– Bandpass signals: the energy is mostly concentrated around –π/2 and π/2.

Let’s now consider a sinusoidal modulation, which is done by multiplying a signal by a cosine: 

DTFT{x[n]cos(!cn)} = DTFT

⇢
1

2
e

j!cn
x[n] +

1

2
e

�j!cn
x[n]

�
=

1

2
[X(ej(!�!c)) +X(ej(!+!c))]

				      2:45� 7:06

Example of demodulation

						      3:32� 7:06

Example of demodulation with carrier frequency that is too high

Example

ωc−ωc−π 0 π

58

Example

−π 0 π

58

Careful when the modulation frequency is too large!

ωc−ωc−π 0 π

61

Careful when the modulation frequency is too large!

−4π −3π −2π −π 0 π 2π 3π 4π

60
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3.7.b TUNING A GUITAR

Now we are going to see a real application: tuning your guitar. The abstraction of the problem is that you 
have reference sinusoid at a frequency ω0. You have a tunable sinusoid of frequency ω. And we would like 
to make ω and ω0 as close as possible, simply by listening to it. What we are going to do here is to beat 
between these two frequencies once they are close enough. And then by tuning, we can bring this beating 
to frequency zero: ω = ω0. And we have tuned our guitar string with respect to a reference frequency. 

First, we bring ω close to ω0. When these two frequencies are close, we play both sinusoids together. We 
write x[n] as a sum of both cos(ω0n) and cos(ωn). An error signal will appear: the cos(∂[ωn]). When ω is close 
to ω0, the error signal occurs at very low frequency. Because it’s at such a low frequency, we cannot really 
hear it. So modulation will it bring up to hearing range. And we’ll actually be able to hear it as an oscillation 
of the carrier frequency. 

An electric bass has an E-string frequency of 41.2 Hertz and an A-string frequency of 55 Hertz. We usually 
use these two harmonics for tuning.

TRISTAN CHORD 

The Tristan Chord is the first chord in Wagner’s opera Tristan und Isolde. It first appears in the introductory 
bars of the opera’s prelude. It is dissonant and does not sound pleasing to the ear. We will apply the fast 
Fourier transform to this chord to analyze its frequency components. From this analysis we see that there 
are many components: there is an F3, a B3, a D4 sharp, and a G4 sharp, and there appears to be an F4, 
which is a regular octave, but also B4. Now that we know the frequency components of this chord we can 
try to synthesize it, using, for example, the Karplus-Strong algorithm we have studied during lectures.
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FIGURE 1

4.1.a LINEAR TIME-INVARIANT FILTERS

Let y[n] = H{x[n]}, where H is a processing device. 

We say that H is linear if the output of a linear combination of inputs is equal to the linear combination of 
the outputs: 

H{ax1[n] + bx2[n]} = aH{x1[n]} + bH{x2[n]}

We say that H is time-invariant if the system will behave in exactly the same way independently of when it 
is switched on:

H{x[n – n0]} = y[n – n0]

The system H is causal if it can only have access to input and output values from the past: the output is a 
linear functional of past values of the input and past values of the output. 

4.1.b CONVOLUTION

The impulse response h[n] fully characterizes an LTI system: h[n] = H{∂[n]}.

First, we time-reverse the impulse response. And at each step, from –infinity to +infinity, we center the 
time-reversed impulse response in the current sample n, so as to shift the time-reversed equal response by 
minus n. And then we compute the inner product between this shifted replica of the impulse response and 
the input sequence.

								                4:30� 6:40

Example of convolution

Convolution example
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Convolution properties: 

CAMERA RESOLUTION 
AND SPACE EXPLORATION

The Rosetta spacecraft was launched about ten years ago by the European Space Agency with the mission of 
reaching the comet Churyumov–Gerasimenko. This comet is also known with the more technical name 67P. 
Rosetta managed to send back to Earth increasingly detailed pictures of the comet as it got progressively 
closer to it. As Rosetta approached the comet, the quality of the pictures progressively improved. From that 
example we can see that resolution is not limited by pixel density: resolution is limited by diffraction. You 
might be surprised to learn that the resolution of Rosetta’s camera is only about four megapixels.
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4.2.a THE MOVING AVERAGE FILTER

The following equation defines an average: 

This formula can helps us to average a noisy output. The moving average filter is based on this, as h[n] = 
H{∂[n]}:
 

The smoothing effect of the filter i proportional to the length of the impulse response, M. As a consequence, 
the number of operations and the storage are proportional to M. 

MA: impulse response

0 M − 1

0

1/M

27

					     3:34� 8:05

Plot of MA impulse response

FIGURE 1
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4.2.b THE LEAKY INTEGRATOR

As we saw earlier, the leaky integrator is defined as follows: 

y[n] = λ·y[n – 1] + (1 – λ)x[n]

Let’s compute its impulse response:

h[n] = λ·h[n – 1] + (1 – λ)∂[n] => h[n] = λn·(1 – λ)·u[n]

To prevent explosion, we always choose λ < 1. 
Impulse response

h[n] = (1− λ)λn u[n]

1− λ

0 15 30

0

36

								           3:46� 5:19

Plot of leaky integrator impulse response 

FIGURE 1
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4.3.a FILTER CLASSIFICATION 
         IN THE TIME DOMAIN

According to the shape of its impulse response, we can label a filter as belonging to one of the following 
categories:
–– Finite Impulse Responses (FIR): their impulse response has a finite support, only a finite number of samples 
are involved in the computation of each output sample, e.g., moving average filter.

–– Infinite Impulse Responses (IIR): their impulse response has an infinite support, hence potentially an infinite 
number of samples involved in the computation of each output sample, e.g., leaky integrator filter.

–– Causal: their impulse response is zero for n < 0, only past samples are involved in the computation, e.g., 
moving average filter.

–– Noncausal: their impulse response is nonzero for some n < 0, e.g., zero-centered moving average filter.

4.3.b FILTER STABILITY

Stability guarantees that the system will not behave unexpectedly if the input of the system is well-behaved, 
i.e., a bounded input. The concept of Bounded-Input Bounded-Output (BIBO) Stability requires that a system 
produces a bounded output when the input is bounded.

FIR filters are always stable, because their impulse response only contains a finite number of nonzero values, 
and therefore the sum of their absolute values will always be finite. On the other hand, when it comes to IIR 
filters, we have to explicitly check for stability.
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4.4.a THE CONVOLUTION THEOREM

Let H be an LTI system:

 

LTI filters cannot change the frequency of sinusoids. The DTFT of the impulse response fully determines the 
frequency characteristic of a filter. 

The convolution theorem is defined as follows: 
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4.4.b EXAMPLES OF FREQUENCY RESPONSE

In general, if H(ejω) = A(e jω)e–jωd, it means that the filter operates by combining the action of a zero phase. 
Therefore a zero delay component only affects the magnitude of the input, followed by a delay of these samples.Moving Average, magnitude response

|H(e jω)| = 1

M

∣

∣

∣

∣

sin(ω
2
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0:26� 14:13

Magnitude of MA DTFT

Linear phase

x [n] D x [n − d ]

� y [n] = x [n − d ]

� Y (e jω) = e−jωd X (e jω)

� H(e jω) = e−jωd

� linear phase term

72					     6:30� 14:13

Linear-phase term

Leaky integrator, magnitude response

λ = 0.9
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79								         9:49� 14:13

Magnitude response of the leaky integrator 

FIGURE 1

FIGURE 2

FIGURE 3
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4.5.a FILTER CLASSIFICATION 
         IN THE FREQUENCY DOMAIN

We can classify filters according to four broad categories based on the shape of their magnitude response:
–– Lowpass filters are filters that let the low frequencies live and kill everything else.
–– Highpass filters do the opposite. They let high frequencies go through and they kill low frequencies, in 
particular frequencies around zero.

–– Bandpass filters only let a band of frequencies go through in the middle of the frequency band. 
–– Allpass filters are filters for which the magnitude is a constant over the entire frequency band.

Filters can also be classified by their phase.

4.5.b THE IDEAL LOWPASS FILTER

The magnitude of the ideal lowpass filter would be 1 over the passband, a perfectly flat passband, and 
identically 0 over the stopband and an infinite attenuation over the stopband. To make matters even better 
we would require the magnitude response to be a real function so that the filter has zero phase and therefore 
introduces no delay. 
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What is the best lowpass we can think of?

ωc−ωc

ωb = 2ωc

−π 0 π

0

1
H
(e

j
ω
)

4
	 0:55� 6:50

Ideal lowpass filter (0:55/6:50) (ωb bandwidth and ωc cutoff frequency)

Ideal lowpass filter: impulse response

0

ωc/π

−20 −10 0 10 20

7
					     2:56� 6:50

Ideal impulse response

This impulse response results in a problem, as it has an infinite support in both directions, which means that 
it cannot be implemented in practice. Also, as it decays very slowly in time, it requires too many samples. 

NB: It is important to be familiar with the rect-sinc pair:

The sinc function is not absolutely summable, which means that the ideal filter is not BIBO stable.

FIGURE 1

FIGURE 2

rect(x) =

(
1, |x|  1/2

0, |x| > 1/2

sinc(x) =

8
<

:

sin(⇡x)

⇡x

, x 6= 0

1, x = 0
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4.5.c IDEAL FILTERS DERIVED 
         FROM THE IDEAL LOWPASS FILTER

The highpass filter is defined as follows:

Ideal highpass filter

ωc−ωc−π 0 π

0

1

H
(e

j
ω
)

16
0:15� 2:34

The ideal highpass filter of cutoff frequency ωc 

Ideal bandpass filter

ω0 − ωc ω0 ω0 + ωc−ω0−π 0 π

0

1

H
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j
ω
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18						      1:15� 2:34

Bandpass filter of carrier frequency ω0

The bandpass filter is actually a demodulation of the lowpass filter seen previously, meaning the following: 

FIGURE 1

FIGURE 2
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4.5.d DEMODULATION REVISITED

In the previous module, we applied sinusoidal modulation to an input signal x[n] to obtain y[n], which is 
equal to x[n]·cos(w0n). And we tried to demodulate the modulated signal by multiplying the modulator 
signal, again by the carrier, cos(w0n). And we found that the demodulated signal contained unwanted high 
frequency components that, at the time, we did not know how to remove.

Now we can modulate it, obtain two copies at half the amplitude, multiply it again by cos(w0n), and apply a 
lowpass filter as follows in figure 1. 

	 0:10									         2:00� 2:16

Revisited demodulation

FIGURE 1

Demodulation revisited

X (e jω)

−π 0 π

22

Demodulation revisited

Y (e jω)

ω0−ω0−4π −3π −2π −π 0 π 2π 3π 4π

23

Demodulation revisited

X ′(e jω)

ω0ω0

ω0ω0−ω0−4π −3π −2π −π 0 π 2π 3π 4π

23

Demodulation revisited

X ′(e jω)

ω0 ω0

ω0−ω0−4π −3π −2π −π 0 π 2π 3π 4π

23

Solution: lowpass filtering

X ′(e jω)

−π 0 π

24

Solution: lowpass filtering

X ′(e jω)

−π 0 π

24
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4.6.a IMPULSE TRUNCATION 
         AND GIBBS PHENOMENON

he idea is that we could approximate an ideal lowpass filter by truncating the impulse response to make it 
a finite support impulse response.

FIR approximation of lenght M = 2N+1:

ĥ[n] =

8
<

:

!c

⇡

sinc(
!c

⇡

n), |n|  N

0, otherwise

It could seem to be a good idea as the mean square error is minimized:

But the reason why this would not be a good idea is because it looks as though the maximum error near 
the transition point for the frequency response never really goes down in spite of the number of points that 
we used for the approximation. We can prove mathematically that the maximum error around the cutoff 
frequency is about 9% of the height of the jump, regardless of the number of points. This is known as the 
Gibbs phenomenon.

IS IT POSSIBLE TO HEAR 
THE SHAPE OF A ROOM?

We will investigate how sound propagates in a room between a sender, or a loud speaker, s, and the 
receiver, or a microphone, r. Every time a sound hits the wall, part of the sound is reflected in such a way 
that the incident angle equals the reflection angle. These angles are defined with respect to the normal of 
the walls. Sound propagation is a fairly complex phenomenon involving the superposition of a signal and its 
different echoes, and means that the derivation of a model might not be very simple. Nevertheless, in room 
acoustics, sound levels are low, and so the linear model is a good approximation. The question is whether 
we can reconstruct the shape of a room using only echoes. We experimented with this in our lab for two 
different shapes of rooms and obtained quite accurate results.
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4.6.b WINDOW METHOD

The impulse truncation can be interpreted as the product of the ideal filter response and a rectangular 
window of N points. From the modulation theorem, the DTFT of the product of two signals is equivalent to 
the convolution of their DTFTs: 

IDTFT{(X ? Y )(ej!)} =
1

2⇡

Z ⇡

�⇡

(X ? Y )(ej!)ej!n
d!

=
1

(2⇡)2

Z ⇡

�⇡

Z ⇡

�⇡

X(ejσ)Y (ej(!�σ))ej!n
dσd!

=
1

(2⇡)2

Z ⇡

�⇡

Z ⇡

�⇡

X(ejσ)Y (ej(!�σ))ejσnej(!�σ)n
dσd!

=
1

2⇡

Z ⇡

�⇡

X(ejσ)ejσndσ
1

2⇡

Z ⇡

�⇡

Y (ej(!�σ))ej(!�σ)n
d!

= x[n]y[n]

Hence, the choice of window influences the quality of the approximation results. The window method is just 
a generalization of the impulse truncation method, where we use a different window shape. For example, 
by using a triangular window, we reduce the Gibbs error at the price of a longer transition.

4.6.c FREQUENCY SAMPLING

The idea here is to say, what if we draw the desired frequency response in the frequency domain. Then we 
sample this frequency response at regularly spaced intervals and calculate the IDFT of these values – the 
inverse DFT. We can always do this for a finite set of frequency points and use the result as an M-tap impulse 
response hat h[n]. 

The interpolator turns out to be, once again, the transform of an N-tap rectangular window. So we’re not 
really escaping from the indicator function that we used in the impulse truncation method. And, because of 
that, we have no control over mainlobe and sidelobes of the interpolator. 

These are good methods to be familiar with in order to quickly try something out when we are faced with 
a filtering problem. But they are definitely not optimal and they leave a lot be desired in terms of the fine 
control that we can have over the maximum error. 
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4.7.a THE Z-TRANSFORM

As ideal filters cannot be implemented, we want to figure out what is the most realizable LTI transformation. 
How do we compute the frequency response of such an equation? 

The tool we will use is called the z-transform. z-transform is a formal operator that maps the discrete type 
sequence x(n) onto a function of the complex variable z, defined as follows: 

Whenever we evaluate the z-transform in z = e jw it becomes the DTFT. Two key properties of the z-transform 
are linearity and time-shifting:

Also:
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4.7.b REGION OF CONVERGENCE AND STABILITY
ROC for causal systems

Re

Im

+

+
+

23

As the z-transform is a power-series, convergence is always absolute. 
The region of convergence (ROC) of a z-transform is the set of points 
on the complex plane for which it exists. The ROC is the whole complex 
plane for finite support sequences; it has circular symmetry, cannot 
include poles and causal sequences extend from a circle to infinity.

It will be defined by the transfer function: 

From the definition of the transfer function we can obtain the following:
–– The zeros (resp. the poles) are the roots of the numerator (resp. 
denominator) of the rational transfer function.

–– The region of convergence is only determined by the magnitude of 
the poles.

–– The z-transform of a causal LTI system extends outwards from the 
largest magnitude pole.

–– An LTI system is stable if its region of convergence includes the unit 
circle.

This last condition in particular offers a simple method for studying the 
stability of LTI systems.

	                 3:20� 7:57

Example of a ROC (causal system) 

Estimating the frequency response

Re Im

|H(z)|

+
+

32

Consider a filter with impulse response h[n]:

The shape of the frequency response will be the level curve computed 
around the unit circle of the rubber sheet.

	                	               5:31� 7:57

Estimating frequency response from pole-zero 
plot (glue zeros, push poles)

FIGURE 1

FIGURE 2
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4.8 INTUITIVE IIR DESIGN

We can derive simple filters from known structures. In general, with low order systems, it is possible to 
analyze and predict their characteristics from their pole zero plot. Furthermore, to obtain a real filter, poles 
and zeros are added in complex conjugate pairs. More especially, we have studied the following filters. 
–– The resonator that selects one specific frequency ω0. It is derived by shifting the passband of a leaky 
integrator to ω0 (fig. 1).

–– The DC (Direct Current) notch that removes the direct current component. It contains a zero at z = 1 (i.e. 
ω = 0) and a pole at λ < 1. DTFT equal to 0 at ω = 0 (fig. 2).

–– The hum removal that removes a specific frequency ω0. It is a DC notch whose stopband is shifted to a 
particular frequency ω0 (fig. 3).

				    3:55� 10:03

Frequency response of a resonator and filter structure

							             6:30� 10:03

Frequency response and circuit of DC notch

											           9:30� 10:03

Hum removal frequency response and circuit

FIGURE 1

FIGURE 2

FIGURE 3

Resonator, λ = 0.9, ω0 = π/3
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Resonator, filter structure
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DC notch
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DC notch, filter structure
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Hum removal, λ = 0.95

−π −π/2 0 π/2 π

0

1

|
H
(e

j
ω
)|

73

Hum removal, filter structure
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4.9.a FILTER SPECIFICATION

A filter design problem starts from a list of filter requirements:
–– What is the desired frequency response of the filter, what are the passband(s) and stopband(s)?
–– What are the desired phase characteristics?
–– What are the limits in terms of computation and/or precision?

We are interested in realizable filters, therefore our final design will be expressed in the form of a rational 
transfer function. 

Our problem is to find the degree of the numerator and of the denominator as well as the coefficients of the 
polynomials involved in order to best fulfill the requirements. In general, if we want very small transmission 
bands, we need to use a filter of high order. And similarly, if we want small error tolerances, we need a high 
order filter. We also must take into account the fact that a high filter order implies more computation and 
hence a larger delay.

To depart from ideal filter characteristics we must also specify:
–– The transition band: range of frequency between the passband and the stopband where the filter impulse 
response transitions from the passband to the stopband.

–– The tolerance band for the error in the passband and stopband. An equiripple filter is where the error 
oscillates within the transition bands equally.
Realistic specs

0 ωp ωs π

passband transition band stopband

0

1

6
				    2:40� 6:24

Example of realistic lowpass tolerance

An important case is what we call the equiripple error, where the error, in this case in the passband, oscillates 
between a maximum and a minimum, and the local extrema of the frequency response coincides with the 
upper and lower limit of the tolerance region.

FIGURE 1
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4.9.b IIR DESIGN

IIR design are translations from known analog design. The routines for calculating them are available in most 
DSP numerical packages. From the specifications, a first filter is computed with a certain order N. Then the 
filter is tested to verify that it meets the desired requirements. If it is not the case, the procedure is run again 
with a higher value of the order 4.9.c FIR design. Butterworth lowpass example

N = 4, ωc = π/4

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
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(e

j
ω
)|

16
						          1:55� 3:53

Butterworth lowpass
Chebyshev lowpass example

N = 4, ωc = π/4, emax = 12%
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								            2:37� 3:53

Chebychev lowpass

FIGURE 1

FIGURE 2
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4.9.c FIR DESIGN

FIR design only exists in discrete-time. In FIR filter design, we only have to determine the coefficients of 
one polynomial. In the 1970s, Parks and McClellan devised a procedure to compute an optimal linear phase 
and equiripple error both in stopband and passband. The algorithm proceeds by minimizing the maximum 
error in the stopband and the passband. FIR are calculated from a list of specifications (frequency response 
and ratio of maximum equiripple error between the passband and the stopband). Linearity of the phase is 
achieved by designing an impulse response, which is either symmetric or antisymmetric. This procedure is 
optimal in the minimax sense as it minimizes the maximum error. Linear phase in FIRs

Symmetric or antisymmetric impulse responses have linear phase

T
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28

	  0:56� 7:56

Four types of filters (odd/even length, symmetric/antisymmetric)

A Type I filter is an odd length symmetric FIR, where the taps are symmetric around an index. Type III filters 
have an odd number of taps; they are antisymmetric around the center tap, which imposes, of course, the 
zero center type. Type II and Type IV filters are symmetric and antisymmetric filters, respectively, both of 
which have an even number of taps.

A good way to compare the performance of different filters is to express their magnitude in decibels. 
Let G be the maximum magnitude in the passband, the attenuation of the filter expressed in decibels is:  
AdB = 20 log10 (|H(e jw)|/G)

Any of these designs can be used to obtain lowpass, bandpass, and highpass filters. Optimal FIR bandpass 
and highpass filters can be designed directly with the Parks-McClellan algorithm. You can also design optimal 
FIR with piecewise linear magnitude responses. 

FIGURE 1
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5.1.a THE CONTINUOUS-TIME PARADIGM

During this course, we look at two different views: the analog and digital view. Some examples of applications 
in digital worldview are arithmetics, combinatorics, computer science, and digital signal processing, while 
some examples of applications of the analog worldview are calculus, distributions, system theory, and 
continuous-time electronics. Related to our course we have the following differences between the two:

DIGITAL WORLDVIEW ANALOG WORLDVIEW

countable integer index n real-valued time t (sec)

sequences x[n] ∈ l2(Z) functions x(t) ∈ L2(R)

frequency ω ∈ [–π, π] frequency Ω ∈ R (rad/sec)

DTFT: l2(Z) → L2 [–π, π] FT: L2(R) → L2(R)

Digital worldview versus analog worldview

How do we bridge the gap between those two worlds? The relationship between going from continuous 
time x(t) to x as a sequence is called sampling. From x the sequence to x(t) is called interpolation. And we 
have to be able to clearly understand at what point we can go from one to the other, when these two are 
tightly related, and when they are not faithful images of each other. 

5.1.b CONTINUOUS-TIME SIGNAL PROCESSING

We would like x(t), our signal, to be a complex function of a real variable and of finite energy (∈ L2(R)). Let 
us define the inner product of two complex signals: < x(t), y(t) > = ∫x*(t)y(t)dt, hence the energy of a signal: 
||x(t)||2 = < x(t), x(t) >. As discrete-time filters exist, we will now study continuous-time filters.
 

Analog LTI filters

x(t) H y(t)

y(t) = (x ∗ h)(t)

=

∫

∞

−∞

x(τ)h(t − τ)dτ

= ⟨h∗(t − τ), x(τ)⟩

12

		  0:59� 5:50

Analog LTI filters

FIGURE 1
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Note the –τ which corresponds to a time-reversal when computing the integral. Regarding Fourier analysis, 
there is no maximum frequency Ω. The corresponding formula is thus given by: 

 

This real-world frequency Ω is important: it is expressed in rad/sec which we can convert to Hertz using the 
frequency F computed as F = Ω/2π, the period of the signal will thus be given by T = 1/F = 2π/Ω.

The convolution theorem in discrete time also holds for continuous time: the convolution of two signals in 
the time domain corresponds to their multiplication in the Fourier domain.

Convolution theorem

x(t) H y(t)

Y (jΩ) = X (jΩ)H(jΩ)

19

							             3:30� 5:50

Convolution theorem for continuous-time signals

Let us now introduce a new concept: band-limitedness. It means that the Fourier transform of a function x 
that is band-limited is such that: X(jΩ) = 0, for |Ω| > ΩN.

FIGURE 2
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5.2.a POLYNOMIAL INTERPOLATION

The interpolation problem seeks to fill the gaps between two samples: how should we do this? First of 
all, we have several requirements for interpolation: we have to decide on the value Ts which is the space 
between two samples, make sure that x(nTs) = x[n], and make sure that x(t) is smooth. In general, we would 
like interpolators to be infinitely differentiable for them to make sense physically. A natural solution for this 
would thus be polynomial interpolation. For N point, we will obtain a polynomial of degree N–1. Let IN = [–N, 
... , N] and PN be the space of degree-2N polynomials over IN. A basis for PN is the family of 2N + 1 Lagrange 
polynomials s.t.: 

Now we can express the Lagrange interpolation to be: 

and the Lagrangian interpolator satisfies p(n) = x[n] for –N ≤ n ≤ N since 

L

(N)
n (m) =

(
1, if n = m

0, if n 6= m

−N  n,m  N

FUKUSHIMA

On March 11, 2011, after an earthquake and several tsunamis had devastated the northeast coast of Japan, 
a multiple core meltdown happened at the Fukushima Daiichi Nuclear Power plant, leading to a substantial 
release of radioactive material into the environment.

Due to a general lack of detailed radiation measurement, SafeCast, a citizen science group based in Japan, 
started building instruments for geo-localized measurements of radioactivity. The idea behind the project 
was to reconstruct a map of radioactivity from these measurements. Instruments were loaned to volunteers 
in the field and measurements were carried out by attaching the sensors to cars. The sensors would then 
take a measurement of the radiation every five seconds. Therefore, sampling was generally limited to areas 
accessible by car. Fairly high measurement levels were observed in some places. This is a typical example 
where the location of measurements is constrained by available infrastructure. Since the measurements were 
done by car, it was only possible to measure on roads. It would then be necessary to apply interpolation to 
get an estimate of the intensity of radiation in areas where no samples were available, such as in forests and 
fields. The function so obtained is then resampled on the regular grid and displayed. A decent estimate of 
the total radiation field is obtained in this way.

Signalof theDay
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5.2.b LOCAL INTERPOLATION 

Now, let us assume that infinite differentiability is no longer a requirement. The zero-order interpolation is 
the approximation by rect-function: 

The interpolation kernel is thus rect(t). Even if it holds, there are discontinuities at some points.

The next type of interpolation is the first-order piece-wise linear interpolation that consists in drawing 
straight lines between the samples. It is called the “connect the dots” strategy: 

where the interpolator kernel is: 

This interpolation is continuous but its derivative is not. 

The third-order interpolator is more interesting as its kernel is composed of two cubic polynomials making 
it continuous up to its second derivative. 

So basically, a common scheme appears in local interpolation based on its kernel ic: 

One of the key properties of local interpolation is that the same interpolating function is used independently 
of N but the main drawback is the lack of smoothness. 

In the limit, local and global interpolation are actually the same as:

A very elegant and powerful formula is thus (the sinc interpolation formula): 
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5.3.a THE SPECTRUM OF INTERPOLATED 
         SIGNALS

The ingredients of a sinc interpolation are a discrete-time signal x[n] with DTFT X(e jω), an interpolation 
interval Ts, and the sinc function properly scaled to have zero crossings at multiples of Ts. The result will be 
a smooth, continuous signal x(t). What is its spectrum? Here are some key facts about the sinc: 

We can derive the spectrum of x as follows: 

If the samples spread apart, the function becomes slower. If the samples are closer together, the signal 
becomes faster. So when you pick the interpolation period Ts, the interpolated signal has only got a band-
limited spectrum where ΩN is π/Ts.
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5.3.b THE SPACE OF BAND-LIMITED FUNCTIONS

General case derivations can be found in the book, but for now, let us assume that we will proceed with 
Ts = 1 and ΩN = π. The space of π-band-limited functions is a Hilbert space. The set of functions φ(n)(t) = 
sinc(t – n) forms a basis for the space. If x(t) is π-band-limited, then the sequence x[n] = x(n) is a sufficient 
representation, i.e., if we have the samples x[n], we can perfectly reconstruct x(t), which is the essence of 
the sampling theorem. Let us now prove that the sinc function and its shifts by integer are the orthonormal 
basis for the π-band-limited space:

Now, using the convolution theorem we get: 
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5.3.c THE SAMPLING THEOREM

To see sampling as a basis expansion: 

We have now the following formulae: 

Not all band-limited functions are precisely band-limited to [–π,π] – what happens to ΩN band-limited 
functions? We will need to rescale those functions by Ts: 

We can now conclude on the sampling theorem: for any ΩN-band-limited function x(t), we can define a 
sequence x[n] by taking equally-spaced samples every Ts seconds that unequivocally represents this 
sequence. In the continuous-time domain, if a signal has a maximum frequency of FN Hertz, it is a sufficient 
condition to take samples of at least 2FN H to faithfully represent this function.
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5.4.a RAW SAMPLING

Raw sampling is almost the same, the difference here is that we do not need to worry about taking the inner 
product before sampling, we just take x(t) every Ts seconds.

Sinc Sampling

x [n] = (sincTs
∗x)(nTs )

x(t) x [n]

ΩN Ts

2

   0:30� 5:47

Sinc sampling block diagram

Raw-sampling an arbitrary signal

xc(t) x [n] = xc(nTs)

Ts

18

              0:45� 5:47

“Raw” sampling

Now let us analyze the wagon-wheel effect. The continuous-time complex exponential x(t) = e jΩ0t is always 
periodic with T = 2π/Ω0, any angular speed is allowed, and FT{e jΩ0t} = 2π∂(Ω – Ω0), which is band-limited 
to Ω0. Taking snapshots at regular intervals of a rotating point is raw sampling. The resulting digital 
frequency is ω0 = Ω0Ts n. When Ts < π/Ω0 or ω0 < π, then the rotating point goes the “right”/positive way. 
When π/Ω0 < Ts < 2π/Ω0 or π < ω0 < 2π, then the phaser advances in big steps, and it seems like it is 
going the “wrong”/negative way. Finally, when Ts > 2π/Ω0, then the phaser has already done a full rotation 
added to some other displacement. This effect is called aliasing. 
 

							              3:45� 5:47

Aliasing

FIGURE 1

FIGURE 2

FIGURE 3

Aliasing

x(t) interp x̂(t) =?

Ts Ts

x [n]

12
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5.4.b SINUSOIDAL ALIASING

Now, let us sample a simple sinusoid: 

If we want to avoid aliasing we will have to make sure the following is satisfied:

Sampling a Sinusoid

sampling frequency digital frequency interpolation

Fs > 2F0 0 < ω0 < π OK: F̂0 = F0

Fs = 2F0 ω0 = π OK (max frequency F̂0 = Fs)

F0 < Fs < 2F0 π < ω0 < 2π negative frequency: F̂0 = F0 − Fs

Fs < F0 ω0 > 2π full aliasing: F̂0 = F0 mod Fs

16

			   0:58� 4:03

Sampling a sinusoid

5.4.c ALIASING FOR ARBITRARY SPECTRA 

What is the spectrum of the raw sampled signals? Let us start by the inverse Fourier transform: 

Frequencies that are 2ΩN apart will be aliased:

FIGURE 1
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hence with a change of variables: 

Now, we will define the periodized spectrum: 

Example: signal bandlimited to Ω0 and ΩN = Ω0

0 ΩN−ΩN

X
c
(j
Ω
)

0 ΩN−ΩN 2ΩN−2ΩN 4ΩN−4ΩN

X̃
c
(j
Ω
)

−π −2π/3 −π/3 0 π/3 2π/3 π

X
(e

j
ω
)

27

										              7:00� 8:25

Example of a band-limited signal to Ω0 and Ω0 = ΩN 

FIGURE 1
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0 ΩN−ΩN
X

c
(j
Ω
)

0 ΩN−ΩN 2ΩN−2ΩN 4ΩN−4ΩN

X̃
c
(j
Ω
)

−π −2π/3 −π/3 0 π/3 2π/3 π

X
(e

j
ω
)

28

										                     7:30� 8:25

Example of a band-limited signal to Ω0 and Ω0 < ΩN (aliasing)Example: non-bandlimited signal

0 ΩN−ΩN

X
c
(j
Ω
)

0 ΩN−ΩN 2ΩN−2ΩN 4ΩN−4ΩN

X̃
c
(j
Ω
)

−π −2π/3 −π/3 0 π/3 2π/3 π

X
(e

j
ω
)

29

										                                          8:05� 8:25

Example of a non–band-limited signal

FIGURE 2

FIGURE 3
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5.4.d SAMPLING STRATEGIES

Given a sampling frequency Ts, if the signal is band-limited to π/Ts (or less), then raw sampling is fine, 
otherwise, we have two choices:
–– Band-limit using a lowpass filter in the continuous-time domain before sampling (fig. 1).
–– Raw sample the signal and incur aliasing (which gives a poor-quality sound, so we usually go for the first choice).

Sinc Sampling and Interpolation

x̂ [n] = ⟨sinc

(

t − nTs

Ts

)

, x(t)⟩ = (sincTs
∗ x)(nTs)

x̂(t) =
∑

n

x [n] sinc

(

t − nTs

Ts

)

x(t) x̂(t)

ΩN Ts Ts

31

					     1:40� 4:03

Sinc sampling and interpolation 

									         2:50� 4:03

Concrete application of sinc sampling and interpolation

FIGURE 1

FIGURE 2

Least squares approximation with sinc sampling and interpolation

0 ΩN−ΩN

X
c
(j
Ω
)

33

Least squares approximation with sinc sampling and interpolation

0 ΩN−ΩN

X
c
(j
Ω
)

33

Least squares approximation with sinc sampling and interpolation

0 ΩN−ΩN

X
c
(j
Ω
)

0 ΩN−ΩN 2ΩN−2ΩN 4ΩN−4ΩN

X̃
c
(j
Ω
)

33

Least squares approximation with sinc sampling and interpolation

0 ΩN−ΩN

X
c
(j
Ω
)

0 ΩN−ΩN 2ΩN−2ΩN 4ΩN−4ΩN

X̃
c
(j
Ω
)

−π −2π/3 −π/3 0 π/3 2π/3 π

X
(e

j
ω
)
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5.5.a STOCHASTIC SIGNAL PROCESSING

Stochastic signals can be described in terms of a probabilistic model. Is it possible to process random 
signals? Yes, it is, and we will give an indication of how to deal with such signals as noise. 

The frequency-domain representation for stochastic processes is the power spectral density: 

A stochastic process is characterized by its power spectral density (PSD). It can be shown that the PSD is 
x(ejω) = DTFT{rx[n]} where rx[n] = E[x[k]x[n +k]] is the autocorrelation of the process x. For a filtered stochastic 
process, y[n] = H{x[n]}: Px(e jω) = |H(e jω)|2Px(e jω).

We can model noise as a stochastic signal, where the most important type of noise is white noise. “White” 
indicates the independencies of the samples, hence: rW[n] = σ 2 ∂[n] and PW(e jω) = σ 2 where σ 2 is the variance 
of the noise. 

Very often we use Gaussian distribution to model the underlying probability distribution function for the 
sample. The reason is that Gaussian distribution is the model of choice when we want to represent the effect 
of many unknown superimposed sources, as is the case for noise. In this case we call the noise additive white 
Gaussian noise, or AWGN for short.

5.5.b QUANTIZATION

Digital devices can only deal with integer values, so we need to map the numeric range of a signal onto a 
finite set of values, which leads to an irreversible loss of information. Samples are stored and processed as 
integers. This operation is called quantization. It maps the numeric range of the discrete samples onto a 
finite set of integers. 

Quantization schemes

x [n] Q{·} x̂ [n]

Several factors at play:

� storage budget (bits per sample)

� storage scheme (fixed point, floating point)

� properties of the input

• range

• probability distribution

4

  0:37� 9:03

Quantization scheme x ∈   and x ̂  ∈ 

FIGURE 1
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Because of the difference between the actual value and the represented integer, the quantizer introduces 
noise into the original signal. We focus on scalar quantizers, that is, ones where samples are quantized 
individually and independently.

If the signal is bounded on an interval [A,B], the optimal quantizer is a uniform quantizer where the interval 
is divided into 2R intervals of equal size. Moreover, if the input signal is uniformly distributed on this interval, 
the optimal representation value for each subinterval in terms of minimizing the mean-squared error is 
the subinterval midpoint. In this case, the error energy is ∆2/12, ∆ = (B–A)/2R, the signal-to-noise ratio 
(ratio between the power of the signal and power of the noise) of a uniform quantizer is equal 22R, which 
in decibels corresponds to 6R. Of course, we are analyzing a very simple type of quantization over a very 
simple class of signals, and quantizers can be designed to be much more complicated than that.

LEHMAN BROTHERS

We are going to look at an application of signal processing to financial data, more specifically, the time 
series of stock prices of Lehman Brothers around 2008. Lehman Brothers was a global financial services firm, 
and one of the largest investment banks in the US. On September 15, 2008, after more than 150 years of 
existence, the firm filed for bankruptcy.

The bankruptcy was just the final act in a series of events that ultimately led up to it. Lehman Brothers was 
highly exposed to the US housing market, in particular to a type of loan known as a subprime mortgage. 
These loans were typically granted to clients who were not able to afford standard loans due to their limited 
financial capabilities. With the burst of the real estate bubble in the US, these clients were the first to default 
on their mortgages. This led to huge financial losses for the banks that were exposed to this market. If we 
take a look at Lehman Brothers’ stock price at the time around this event (2004–2014), we can observe 
a drastic drop at the time of bankruptcy. Evolution of the stock does not exhibit clear patterns. But the 
underlying statistical characteristic might be more stable over time. With random signals, certain tools that 
we have developed are still valid, such as filtering. But we also need to introduce new tools, which is the 
subject of another class on statistical signal processing.
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6.1.a THE SUCCESS FACTORS 
         FOR DIGITAL COMMUNICATION

What are the reasons behind the success of digital communication?

The first one is the DSP paradigm: the fact that DSP works with integers makes signals easy to regenerate, 
digital filters allow us to implement a very precise phase control, and we can also seamlessly integrate 
adaptive algorithms into a DSP system. 

The second success factor for digital communication comes from the algorithmic nature of DSP techniques: 
for example, JPEG in image coding where signal processing techniques such as discrete cosine transformation 
can be matched to information theory techniques (which involve compression of bit streams). 

Finally, the third success factor is related to hardware advancements. Communication devices have become 
very power efficient, so we can have large data centers or central offices that process an enormous number 
of communication channels in parallel. 

6.1.b CONSTRAINTS OF THE ANALOG CHANNEL

The capacity of a channel is the maximum amount of information that can reliably be delivered along it 
(usually expressed in bits/seconds). Every analog channel has two inescapable limits: bandwidth and power 
constraints, both affecting the final capacity of the channel. 

Let us focus on the relationship between bandwidth and capacity. Suppose we are going to transmit 
information encoded over a continuous-time channel: we take the samples, interpolate them with a sampling 
period Ts, if Ts is very small, then we can send more samples per second but the bandwidth will grow to 1/Ts. 
So we see that capacity and the amount of information that we can send per second are related.

Similarly, the relationship between the power constraint and capacity can be appreciated because we can 
never do away with noise: as the receiver, we have to guess what has been sent after it has been corrupted 
by noise. It is rather intuitive that a signal with a wider range will have more power.

http://www.ppur.org
http://moocs.epfl.ch


LEARN 

FASTER, 

LEARN 

BETTER!

BOOCs 
EPFL 75

Digital Signal Processing
Paolo Prandoni  
and Martin Vetterli

6.1.c THE DESIGN PROBLEM

The all-digital paradigm is basically keeping everything digital until we hit the physical channel (using a 
Digital-to-Analog converter). 

The all-digital paradigm

keep everything digital until we hit the physical channel

..01100

01010...

TX D/A s(t)

Fs = 1/Ts

s[n]

16

0:10� 3:53

All-digital paradigm in a block diagram

The channel constraints look like a filter design problem: we have a bandwidth that is specified in term of 
a maximum and minimum frequency, so we can only operate over this band, and then we have a power 
constraint that restricts the power associated to the signal that we produce. 

Let’s look at the channel constraints

0 Fmin Fmax

bandwidth constraint

power constraint

17

		  0:49� 3:53

Channel constraints

Here are some working hypotheses that are common to most transmission systems you will come across. 
We start from a bitstream, and we will convert this bitstream into a sequence of symbols or samples a[n] via 
a mapper. The mapper associates a groups of bits to a specific symbol. Now, we have to figure out what to 
do before converting those symbols into an analog signal: we have to fulfill both the bandwidth and power 
constraints. If we assume that the data is randomized (by a scrambler) and therefore the symbol sequence 
is a white sequence, we know that the power spectral density is simply equal to the variance, which implies 
that the power will be constant over the entire frequency band. To satisfy the bandwidth frequency we will 
have to introduce a new concept: upsampling.

FIGURE 1

FIGURE 2
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6.2.a UPSAMPLING

We need to be able to “shrink” the support to a full-band signal so that it fits on the band allowed by the 
channel. We will thus use multirate techniques. In multirate, the main goal is to increase or decrease the 
number of samples in discrete-time signal. One way of doing this is to interpolate the digital signal we are 
given and resample it at a different sampling rate. However, we want to avoid the transition to discrete time 
and we want to perform this artificial change of sampling rate entirely in the digital domain. Let us then 
consider the upsampling operation. 

	 0:48� 7:46

Upsampling via continuous time (interpolating at Ts and resampling at Ts/K)

Let Ts = 1, 

				    2:45� 7:46

Example of upsampling application in the frequency domain

FIGURE 1

FIGURE 2
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FIGURE 3

How can we achieve this in the digital domain only? We need to increase the number of samples by K, 
obviously the new signal will be built such that xu[m] = x[n] for m being a multiple of K, and insert K – 1 
zeros after each sample. Then, moving to the frequency domain, we will apply an ideal lowpass ωc = π/K, 
the result in sequence is thus:

Upsampling by K = 3

3π/4−π −π/2 0 π/2 π

0

1

X
(e

j
ω
)

−5π −4π −3π −2π −π 0 π 2π 3π 4π 5π

0

1

X
(e

j
ω
)

π/4−π −π/2 0 π/2 π

0

1

X
U
(e

j
ω
)

24

									         5:00� 7:46

Example of upsampling with lowpass filter in the frequency domain

In general, if we have an upsampled sequence, we can always recover the original sequence by downsampling. 
Downsampling is a more complex operation than upsampling, just as sampling is more complicated than 
interpolation. We encourage you to read about multirate signal processing in the book.
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6.2.b FITTING THE TRANSMITTER SPECTRUM
Remember the bandwidth constraint?

0 Fmin Fmax Fs/2

25

0:00� 4:51

Bandwidth constraints

Let W = Fmax – Fmin then pick Fs < 2Fmax to avoid aliasing, Fs = KW, where K is a positive integer. In the digital 
domain, we can simply upsample the symbol sequence by K so that its bandwidth in the digital domain will 
be ωmax – ωmin = 2πW/Fs = 2π/K.

Upsampling does not change the data rate, we produce W symbols per second. W is the fundamental 
data rate of the system, it is sometimes called the Baud rate of the system and it is equal to the available 
bandwidth.

Transmitter design, continued

..01100

01010...

Scrambler Mapper K ↑
a[n]

× D/A s(t)

cosωcn

b[n] s[n]

28

						      2:07� 4:51

Revised block diagram for the transmitter

Raised Cosine

−π −π/2 0 π/2 π

0

1

30											           4:00� 4:51

A very good filter: the raised cosine (frequency response) 

FIGURE 1

FIGURE 2

FIGURE 3
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6.3.a NOISE AND PROBABILITY OF ERROR

The transmitter sends a sequence a[n] and the receiver obtains a sequence â[n], but even if there is no 
distortion, we cannot avoid â[n] = a[n] + η[n], where η is the noise that corrupts the original sequence. When 
the noise is very large, our estimate of the original sequence will be off and we will make a decoding error. 
The probability of this error will depend on the power of the noise with respect to the power of the signal 
and on the decoding strategy. One way of maximizing our chances at correctly guessing the transmitted 
symbols is to use a suitable alphabet of transmission symbols. 

Let’s assume we have a randomized bitstream coming in, and we want to send upsampled and interpolated 
samples over the channel before transmitting them. How do we go from the bitstream to the samples, i.e., 
how does the mapper work? It splits incoming bitstreams into chunks and assigns a symbol a[n] from a 
finite alphabet A to each of them. To undo the mapping operation, and recover the bitstream, the receiver 
performs a slicing operation which consists in deciding which symbol is “closest” to â[n] and then piecing 
back together the corresponding bitstream. 

Let’s assume that the noise and the signal are independent, and that the noise is AWGN with zero mean 
and σ0 variance. If we consider the example of a binary sequence sent mapped to {+G,–G}, the two-level 
signaling example, the probability of error will be:

Perr = P [⌫[n] < �G|n� th bit is 1] + P [⌫[n] > G|n� th bit is 0]

= (P [⌫[n] < �G] + P [⌫[n] > G])/2

= P [⌫[n] > G]

=

Z 1

G

1p
2⇡σ2

0

e

− x2

2�2
0
d⌧

= erfc(G/σ0)

and the transmitted power will be defined as: 

σ2
s = G2P [n − th bit is 1] + G2P [n − th bit is 0] = G2

Peerr = erfc(σs/σ0) = erfc(
√

From that example, we can see that in order to reduce the probability of error, we should increase the 
amplitude of the signal G, which increases the power of the signal. But we also know that we cannot go 
above the channel’s power constraint. 

To increase the throughput, we can use multilevel signaling.
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6.3.b PAM AND QAM

Pulse Amplitude Modulation (PAM): the mapper splits the incoming bitstream into chunks of M bits so 
that each chunk corresponds to an integer k[n] ∈ {1, 2, ... , 2M – 1}. This sequence is then mapped onto a 
sequence a[n] = G((–2M + 1) + 2k[n]), G being the gain factor. 

PAM, M = 2,G = 1

−3 −1 1 30

� distance between points is 2G

� using odd integers creates a zero-mean sequence

47

            1:05� 11:33

PAM for M = 2, G = 1

The error analysis for PAM is very similar to what we carried out for bilevel signaling (which is basically a 
PAM where M = 1) and the result is again an exponentially decaying function of the SNR. If we want to 
increase the throughput even further, we can use complex numbers and build a complex valued transmission 
system. The name of this complex valued map and scheme is Quadratic Amplitude Modulation (QAM). The 
mapper takes the incumbent bitstream and splits it into chunks of M bits with M even. Then it uses half of 
the bits to define a PAM sequence, ar[n], and the remaining M/2 bits to define another independent PAM 
sequence, ai[n]. The final symbol sequence is a sequence of complex numbers a[n]= G(ar[n] + jai[n]). At the 
receiver, the slicer works by finding the symbol in the alphabet that is closest in Euclidian distance to the 
received symbol. 

		        3:17� 11:33

QAM for M = 2, 4 , G = 1

FIGURE 1

FIGURE 2

QAM, M = 2,G = 1
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QAM, M = 4,G = 1

Re
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FIGURE 3

The way the slicer works is by defining decision regions around each point, which is a square of side 2G 
centered around the point. As long as the received point is received within the decision region, we will not 
make an error; it will be decoded correctly. To quantify the probability of error, again we assume â [n] = 
a[n] + η[n], where the noise is a complex-valued Gaussian variable with variances in the real and imaginary 
axes of σ0/2: 

Probability of error

100

10−10

10−20

4-point QAM
16-point QAM
64-point QAM

0 10 20 30

SNR (dB)

P
er
r
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Probability error of a QAM constellation
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6.4.a MODULATION AND DEMODULATION

Let b[n] = br[n] + jbi[n] be a complex-valued baseband signal. We can create the following real-valued 
passband signal: 

If we receive this as the receiver, we will be able to recover the original signal. 

						      3:30� 7:41

Illustration of the modulation process

FIGURE 1
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To recover the baseband signal, we have to multiply by the carrier at the receiver as follows: 

								        4:19� 7:41

Recovering the in-phase component (filtering out the unnecessary components with a lowpass filter)

Similarly for the quadrature part of the baseband signal, we can multiply s[n]: 

then filter out the unnecessary values with a low pass filter.

FIGURE 2
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6.4.b DESIGN EXAMPLE

Let us now see how we can put everything we have learned so far and design a practical system to send data 
over the telephone channel. Suppose that the bandwidth constraint for the telephone channel stipulates 
that we can only transmit data from Fmin = 450Hz to Fmax = 2850Hz, with the center frequency Fc = 1650Hz. 
This gives us a usable bandwidth of W = 2400Hz. As we have to pick a sample frequency that is at least twice 
the highest frequency, let us choose Fs = 3·2400 = 72000Hz. When we translate this back to the original 
domain, the modulating frequency is ωc = 0.458π. Let us also assume that the maximum SNR is 22 dB. Let 
us pick Perr = 10–6. Plugging those values in the formula, using QAM: 

we pick M = 4 and use a 16-point constellation. The final data rate is WM = 9600 bits/second. 

QAM transmitter, final design

..01100

01010...

Scrambler Mapper K ↑
a[n]

× Re D/A s(t)

e jωcn

b[n] c[n] s[n]

3

   0:10� 5:19

Final design for the transmitter QAM receiver, idealized design

H(z) e−jωcn

ŝ(t) + ×

j

ŝ[n] ĉ[n] b̂[n]

K ↓ Slicer Descrambler ..01100

01010...

â[n]

15
      0:20� 5:19

Final design for the receiver

Shannon’s capacity formula is the upper bound on the amount of information that we can send C = 
W·log2(1+SNR) [bits/second], which in our case gives C ~17500bps. With our design we are basically hitting 
half of the capacity of the channel, but that gap can be narrowed by more sophisticated coding techniques.

FIGURE 1

FIGURE 2
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6.5.a RECEIVER DESIGN

As this video treats an example around an audio file we encourage you to watch it.

You may have recognized the sound as the obligatory soundtrack every time you used to connect to the 
Internet. This is the sound made by a V34 modem. And you probably wondered what was going on. The 
receiver has to cope with four potential sources of problem: interference, the propagation delay (the delay 
introduced by the channel), the linear distortion (introduced by the channel), and drifts in the internal clocks 
between the digital system inside the transmitter and the digital system inside the receiver. When it comes 
to interference the handshake procedure and line probing pilot tones are used in clever ways to circumvent 
the major sources of interference. Propagation delay is tackled with a delay estimation procedure. Distortion 
for displaying the channel is compensated for by using adaptive equalization techniques. Clock drifts are 
tackled by using timing recovering techniques.

6.5.b DELAY COMPENSATION

To simplify the analysis we will assume that the clocks at the transmitter and receiver are synchronized and 
synchronous. Assume the channel acts as a simple delay: ŝ (t) = s(t – d) which implies that the frequency 
response of the channel is D(jΩ)= e–jΩd. It introduces a delay of d seconds, which we can write as d = (b + τ)
Ts , where b is a positive integer and |τ| < 1/2, b is called the bulk delay, and τ is called the fractional delay. 

It is relatively simple to compensate for the bulk delay; imagine the transmitter begins transmission by 
sending just one impulse over the channel. The discrete time signal is just a delta in zero. It gets to the 
receiver after a delay, D, that we can estimate, for instance, by looking at the placement of the peak of 
the intervalation function. So for the receiver to offset the bulk delay we will just set the nominal n = 0, to 
coincide with the location of the maximum value of the sample sequence.

To compensate for the fractional delay, the transmitter sends an initial known sequence from which the 
receiver derives an estimate of the fractional delay. Given this estimation, the receiver implements a Lagrange 
interpolation (as in module 6.2) that uses a neighborhood of points around the current observations to 
compensate for the fractional delay. We then obtain 2N + 1 Lagrangian coefficients. Then we filter with the 
resulting FIR. The latter can be implemented as a simple FIR filter, a great advantage in practice.
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6.5.c ADAPTIVE EQUALIZATION

In figures 1 and 2, we would like to undo the effects of the channel on the transmitted signal.

0:10� 5:17

Scheme of effects on the signal sent through the channel

Example: adaptive equalization

s[n] D(z) E (z) ŝe [n] = s[n]
ŝ[n]

39

	     0:50� 5:17

Undo the effect of the channel

The target is for the output to give us a signal that is equal to the transmitted signal. In theory, we could say 
that E(z) = 1/D(z), but we might not know D(z) in advance, and it also may change over time. We then need 
to use adaptive equalization. 

Adaptive equalization

ŝ[n] E (z)

- s[n]

ŝe [n]

e[n]

41

		                 1:55� 5:17

Adaptive equalization

FIGURE 1

FIGURE 2

FIGURE 3

Compensating for the distortion

s[n] D(z) ŝ[n]

38

Paolo 

Compensating for the distortion

s[n] D/A D(jΩ) A/D ŝ[n]
s(t) ŝ(t)

37
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How do we get the exact transmitting signal at the receiver’s end? Using two tricks: the first one is 
bootstrapping (the transmitter will send a prearranged sequence of symbols to the receiver), and the second 
one is the online mode. Both are explained in figures 4 and 5 via block diagrams. 

Adaptive equalization: bootstrapping via a training sequence

at [n] TX . . .
s[n]

ŝ[n] E (z)

- Modulator at [n]

ŝe [n]

s[n]e[n]

42

		                 3:00� 5:17

Bootstrapping via a training sequence

Adaptive equalization: online mode

ŝ[n] E (z) Demod Slicer

- Modulator

ŝe [n] â[n]

s ′[n]e[n]

43

		                 3:30� 5:17

Online mode

There are still so many questions that we would have to answer to be thorough. For instance, how do we 
carry out the adaptation of the coefficients in the equalizer? How do we compensate for different clock 
rates in geographically diverse receivers and transmitters? How do we recover from the interference from 
other transmission devices and how do we improve noise resilience? The answers to all those questions 
require a much deeper understanding of adaptive signal processing. And hopefully, that will be the topic of 
your next signal processing class.

FIGURE 4

FIGURE 5

http://www.ppur.org
http://moocs.epfl.ch


LEARN 

FASTER, 

LEARN 

BETTER!

BOOCs 
EPFL88

Digital Signal Processing
Paolo Prandoni  
and Martin Vetterli

6.6.a ADSL DESIGN

When you talk on the phone, voice communication is sent to the voice network and then relayed to what is 
called the plain old telephone system, POTS.The ADSL channel

0 1MHz

POTS
upstream
downstream

48

	 1:30� 8:05

The ADSL channel organization for positive frequencies

Copper wire has both a very large bandwidth and can experience many different sources of disturbances, 
such as radio interferences. Therefore, it is hard to design a global solution for the entire channel. In ADSL 
the channel is divided into equally-spaced subchannels. The low frequency ones are reserved for voice 
communication. Then a portion is used for the upstream and a bigger portion for the downstream. It is 
this asymmetry in the differing sizes that explains the A in the ADSL acronym. ADSL stands for asymmetric 
digital subscriber line. Each subchannel is treated independently and transmits data according to its own 
SNR. Some might not even be used if the interferences are too high, for example. In ADSL, each subchannel 
implements an indecent QAM based on the local SNR. There is a simple implementation of this bank of 
independent signaling schemes as an inverse FFT. This ease of implementation is certainly an important 
reason behind the huge commercial success of ADSL.

FIGURE 1
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6.6.b DISCRETE MULTITONE MODULATION

ADSL transmission can be efficiently implemented with simply an inverse FFT. We will look at a very efficient 
implementation of that signaling strategy that goes under the name of discrete multitone modulation.

The bank of modems, revisited

e j(2π/2N)(0·n)

a0[⌊n/2N⌋] ×

e j(2π/2N)(1·n)

a1[⌊n/2N⌋] ×

e j(2π/2N)(2·n)

a2[⌊n/2N⌋] × + Re s[n]

. . .

e j(2π/2N)(N−2)n

aN−2[⌊n/2N⌋] ×

e j(2π/2N)(N−1)n

aN−1[⌊n/2N⌋] ×

c[n]

65
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Bank of modems revisited

The complex output signal of such a scheme is: 

We are interested in: 

therefore 

Schematically, we can draw up the ADSL transmitter as one big inverse FFT. And the inputs to this FFT are 
twice the baseband symbol, followed by the symbols for the subchannels from 1 to N – 1. 

FIGURE 1
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ADSL transmitter

Here are the ADSL specs:

• Fmax = 1104 KHz

• N = 256

• each QAM can send from 0 to 15 bots per symbol

• forbidden channels: 0 to 7 (voice)

• channels 7 to 31: upstream data

• max theoretical throughput: 14.9 Mbps (downstream)

MOIRÉ PATTERNS

Moiré is a French word that indicates a form of textile with a lot of surface decoration. If you ever get called 
in for a TV interview, do not wear a striped shirt. A moiré pattern will appear and give your shirt a different 
aspect.

The simplest way to generate moiré patterns is to take a regular pattern, such as a set of vertical lines, and then 
make a copy of the same pattern, rotate it a little bit differently, and then superpose them. There are other 
types of moiré patterns of other dimensions and it can even be noticed in music. They are caused by aliasing. 

Let’s look at a practical application of moiré patterns, which comes in the form of secure printing. Take 
a 20 euro banknote. The banknote is embedded with very, very fine lines, too fine for most scanners or 
camera to capture correctly. So if you take this banknote and try to make more money by photocopying it 
or scanning it, the moiré patterns appear in the secure zone of the banknote, and prevents you from making 
an accurate copy of it. 

FIGURE 2

Signalof theDay
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